首页> 外文期刊>Quality Control, Transactions >Hybrid Feature Selection for Wafer Acceptance Test Parameters in Semiconductor Manufacturing
【24h】

Hybrid Feature Selection for Wafer Acceptance Test Parameters in Semiconductor Manufacturing

机译:半导体制造中晶片验收测试参数的混合特征选择

获取原文
获取原文并翻译 | 示例

摘要

Wafer acceptance test (WAT) is a key process of semiconductor manufacturing. The collected testing parameters can be used in identification of wafer defects, improvement of product yield, and control of production costs. However, WAT parameters regularly have characteristics such as high dimensions and strong redundancy, which prevent the wafer yield from accurate prediction and effective improvement. To overcome these shortcomings, a hybrid feature selection method is proposed to identify key WAT parameters influencing wafer yields. This method is composed of two stages, i.e. filter selection and wrapper selection. In filter selection, the minimum Redundancy Maximum Relevance (mRMR) filtering parameter pre-screening criterion based on mutual information (MI) is proposed. The relevance between each parameter and the wafer yield value is calculated by MI. At the same time, the criterion of MI is used to measure the redundancy between each parameter to select the minimum redundancy parameters, and reduce feature size for further searches. In wrapper selection, a wrapped key parameter identification model based on genetic algorithm (GA) and deep belief network (DBN) is designed. The coding and optimization of candidate input parameters are realized by GA. The wafer yield prediction error value of the DBN and the weight of the selected features are solved as the fitness function to realize the selection process of the combined parameters. In experiment, both testing data sets and industrial data are used to demonstrate the efficiency of this proposed method.
机译:晶圆验收测试(WAT)是半导体制造的关键过程。收集的测试参数可用于识别晶片缺陷,提高产品产量,并控制生产成本。然而,Wat参数定期具有高尺寸和强度冗余的特性,这防止晶片产量从精确的预测和有效的改进。为了克服这些缺点,提出了一种混合特征选择方法来识别影响晶片产量的关键Wat参数。该方法由两个阶段组成,即滤波器选择和包装选择。在过滤器选择中,提出了基于互信息(MI)的最小冗余最大相关性(MRMR)过滤参数预筛选标准。每个参数和晶片屈服值之间的相关性由MI计算。同时,MI的标准用于测量每个参数之间的冗余,以选择最小冗余参数,并减少进一步搜索的特征大小。在包装选择中,设计了一种基于遗传算法(GA)和深度信念网络(DBN)的包装密钥参数识别模型。候选输入参数的编码和优化由Ga实现。 DBN的晶片产量预测误差值和所选特征的权重被求解为实现组合参数的选择过程的适合功能。在实验中,测试数据集和工业数据都用于展示该方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号