首页> 外文期刊>Quality Control, Transactions >A Cascaded R-CNN With Multiscale Attention and Imbalanced Samples for Traffic Sign Detection
【24h】

A Cascaded R-CNN With Multiscale Attention and Imbalanced Samples for Traffic Sign Detection

机译:具有多尺度的级联R-CNN,用于交通标志检测的MultiScale Incorment和Mubalanced样本

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the deep learning is applied to the field of traffic sign detection methods which achieves excellent performance. However, there are two main challenges in traffic sign detection to be solve urgently. For one thing, some traffic signs of small size are more difficult to detect than those of large size so that the small traffic signs are undetected. For another, some false signs are always detected because of interferences caused by the illumination variation, bad weather and some signs similar to the true traffic signs. Therefore, to solve the undetection and false detection, we first propose a cascaded R-CNN to obtain the multiscale features in pyramids. Each layer of the cascaded network except the first layer fuses the output bounding box of the previous one layer for joint training. This method contributes to the traffic sign detection. Then, we propose a multiscale attention method to obtain the weighted multiscale features by dot-product and softmax, which is summed to fine the features to highlight the traffic sign features and improve the accuracy of the traffic sign detection. Finally, we increase the number of difficult negative samples for dataset balance and data augmentation in the training to relieve the interference by complex environment and similar false traffic signs. The data augment method expands the German traffic sign training dataset by simulation of complex environment changes. We conduct numerous experiments to verify the effectiveness of our proposed algorithm. The accuracy and recall rate of our method are 98.7; and 90.5; in GTSDB, 99.7; and 83.62; in CCTSDB and 98.9; and 85.6; in Lisa dataset respectively.
机译:近年来,深入学习适用于交通标志检测方法领域,实现出色的性能。然而,迫切地解决了交通标志检测中有两个主要挑战。对于一件事,一些小尺寸的交通迹象比大尺寸的尺寸更难以检测,以便未检测到小的交通标志。对于另一个,由于照明变化,恶劣天气和类似于真正的交通标志的一些迹象,始终检测到一些错误的迹象。因此,为了解决未调整和错误检测,我们首先提出了一种级联的R-CNN,以获得金字塔中的多尺度特征。除了第一层之外的级联网络的每层都融合了前一层的输出边界盒以进行联合训练。该方法有助于交通标志检测。然后,我们提出了多尺度注意方法,以通过DOT-Product和Softmax获取加权多尺度特征,该功能总结为突出显示流量标志特征并提高交通标志检测的准确性。最后,我们增加了DataSet余额的困难负数样本的数量和训练中的数据增强,以缓解复杂环境和类似的错误交通标志的干扰。数据增强方法通过模拟复杂环境变化来扩展德国交通标志训练数据集。我们进行多项实验来验证我们所提出的算法的有效性。我们方法的准确性和召回率为98.7; 90.5;在GTSDB,99.7;和83.62;在CCTSDB和98.9;和85.6;在Lisa DataSet中分别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号