首页> 外文期刊>Quality Control, Transactions >An Interval-Valued Data Classification Method Based on the Unified Representation Frame
【24h】

An Interval-Valued Data Classification Method Based on the Unified Representation Frame

机译:基于统一表示框架的间隔值数据分类方法

获取原文
获取原文并翻译 | 示例

摘要

Interval-valued data (IVD) is a kind of data where each feature is an interval. The midpoint and boundary are the two commonly used methods for representing IVD. However, their structure information (such as location, size) may be incomplete because only midpoint or endpoint is adopted which will lead to poor results of data processing. To better depict the structural information of IVD, a unified representation frame (URF) for IVD is proposed. It not only takes into account the size and location information, but the relationship between them as well. This frame can also represent the midpoint and boundary methods in a unified way. Besides, symmetrical uncertainty (SU) is adopted to measure the relationship between features and classes quantitatively, and irrelevant features will be eliminated based on SU. The proposed URF & x005F; SU is applied in some traditional classifiers like LIBSVM, CART Tree and KNN. The experimental results on synthetic and real-world datasets demonstrate that the proposed approach is more effective than other representation methods of IVD in classification tasks.
机译:间隔数据(IVD)是一种数据,其中每个功能是间隔。中点和边界是表示IVD的两个常用方法。但是,它们的结构信息(例如位置,大小)可能是不完整的,因为仅采用了中点或端点,这将导致数据处理结果不佳。为了更好地描绘IVD的结构信息,提出了IVD的统一表示帧(URF)。它不仅考虑到大小和位置信息,而且还考虑到它们之间的关系。该帧还可以以统一的方式表示中点和边界方法。此外,采用对称的不确定性(SU)来定量测量特征和类之间的关系,并且基于SU将消除无关的功能。拟议的URF&x005f; SU适用于一些传统的分类器,如libsvm,购物车树和knn。合成和现实世界数据集的实验结果表明,所提出的方法比分类任务中的IVD的其他代表方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号