首页> 外文期刊>Quality Control, Transactions >Attention-Aware Joint Location Constraint Hashing for Multi-Label Image Retrieval
【24h】

Attention-Aware Joint Location Constraint Hashing for Multi-Label Image Retrieval

机译:对多标签图像检索的关注感知关节位置约束散列

获取原文
获取原文并翻译 | 示例

摘要

Learning based hashing has been widely used in approximate nearest neighbor search for image retrieval. However, most of the existing hashing methods are designed to learn only simplex feature similarity while ignored the location similarity among multiple objects, thus cannot work well on multi-label image retrieval tasks. In this paper, we propose a novel supervised hashing method which fusions the two kinds of similarities together. First, we leverage an adjacency matrix to record the relative location relationship among multiple objects. Second, by incorporating matrix discretization difference and image label difference, we re-define the pairwise image similarity in a more meticulous way. Third, to learn more distinguishable hash codes, we leverage an attention sub-network to identify the approximate regions of the objects in an image so that the extracted features can mainly focus on the foreground objects and ignore the background clutter. The loss function in our method consists of a multi-categories classification loss which is used to learn the attention sub-network and a hash loss with a scaled sigmoid function which is used to learn the efficient hash codes. Experiment results show that our proposed method is effective in preserving high-level similarities and outperforms the baseline methods in multi-label image retrieval.
机译:基于学习的哈希广泛用于近似最近邻的图像检索。但是,大多数现有散列方法都旨在仅限于仅限Simplex特征相似性,同时忽略多个对象之间的位置相似性,因此无法在多标签图像检索任务中使用。在本文中,我们提出了一种新颖的监督散列方法,该方法将两种相似之处融合在一起。首先,我们利用邻接矩阵来记录多个对象之间的相对位置关系。其次,通过纳入矩阵离散化差和图像标签差异,我们以更细致的方式重新定义成对图像相似度。三,要了解更多可区分的哈希代码,我们利用注意子网来识别图像中对象的近似区域,使得提取的特征主要专注于前景对象并忽略背景杂波。我们方法中的损失函数包括多类分类丢失,用于学习注意子网和散列损失,使用缩放的符合统计函数,用于学习有效的哈希代码。实验结果表明,我们所提出的方法在维护高级相似性方面是有效的,并且优于多标签图像检索中的基线方法。

著录项

  • 来源
    《Quality Control, Transactions》 |2020年第2020期|3294-3307|共14页
  • 作者单位

    Chongqing Univ Coll Comp Sci Chongqing 400030 Peoples R China|Chongqing Univ China Key Lab Dependable Serv Comp Cyber Phys Soc Minist Educ Chongqing 400030 Peoples R China;

    Chongqing Univ Coll Comp Sci Chongqing 400030 Peoples R China|Chongqing Univ China Key Lab Dependable Serv Comp Cyber Phys Soc Minist Educ Chongqing 400030 Peoples R China;

    Chongqing Univ Coll Comp Sci Chongqing 400030 Peoples R China|Chongqing Univ China Key Lab Dependable Serv Comp Cyber Phys Soc Minist Educ Chongqing 400030 Peoples R China;

    Chongqing Univ Coll Comp Sci Chongqing 400030 Peoples R China|Chongqing Univ China Key Lab Dependable Serv Comp Cyber Phys Soc Minist Educ Chongqing 400030 Peoples R China;

    Guilin Univ Elect Technol Guangxi Key Lab Trusted Software Guilin 541004 Peoples R China|Guilin Univ Elect Technol Guangxi Key Lab Optoelect Informat Proc Guilin 541004 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Attention sub-network; hashing method; image retrieval; location relationship;

    机译:注意子网;散脉法;图像检索;位置关系;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号