首页> 外文期刊>Neurocomputing >Deep top similarity hashing with class-wise loss for multi-label image retrieval
【24h】

Deep top similarity hashing with class-wise loss for multi-label image retrieval

机译:与多标签图像检索的类明智损失深度相似性散列

获取原文
获取原文并翻译 | 示例

摘要

One of the major challenges of learning to hash in large-scale image retrieval is the projective transfor-mation from raw image to binary space with preserving semantic similarity. Recently, several deep hash-ing methods show many excellent properties compared with traditional hashing based on hand-designed representation. However, most of the existing hashing models only pay attention to the semantic simi-larity between image pairs, ignoring the ranking information of retrieval results, which limits its perfor-mance. In this paper, a novel deep hashing framework, named Deep Top Similarity Hashing with Class-wise loss (DTSH-CW), is proposed to preserve semantic similarity between top images of ranking list and query images. In this proposed framework, CNNs architecture with batch normalization module is adopted to extract deep semantic characteristics. With integrating the position information of images, a top similarity loss is carefully designed to ensure the similarities between top images of ranking list and query images. Unlike pair-wise or triplet-wise loss, by directly leveraging the class labels, a cubic constraint based on Gaussian distribution is introduced to optimize objective function so as to maintain semantic variations of different classes. Furthermore, in order to solve discrete optimization problem, Two-Stage strategy is developed to provide efficient model training. Quantities of comparison experi-ments on three multi-label benchmark datasets show that our proposed DTSH-CW achieves promising performance compared to several state-of-the-art hashing methods.(c) 2021 Elsevier B.V. All rights reserved.
机译:在大规模图像检索中学习哈希的主要挑战之一是从原始图像到二进制空间的投影转型,具有保护语义相似性。最近,与基于手工设计的表示相比,几种深层散列方法与传统散列相比,许多优异的性能。然而,大多数现有的散列模型只关注图像对之间的语义simi-larity,忽略了检索结果的排名信息,这限制了其穿孔漫步。在本文中,提出了一种具有类别损失(DTSH-CW)的深层散框架,命名为DTS-CW),以保持排名列表和查询图像的顶部图像之间的语义相似性。在该提出的框架中,采用具有批量归一化模块的CNNS架构来提取深度语义特征。通过集成图像的位置信息,仔细设计顶部相似性损失,以确保排名列表和查询图像的顶部图像之间的相似性。与直接利用类标签直接利用类标签不同,引入了基于高斯分布的立方约束,以优化目标函数,以维持不同类别的语义变化。此外,为了解决离散优化问题,开发了两级策略来提供有效的模型培训。三个多标签基准数据集上的比较实验数量表明,与若干最先进的散列方法相比,我们提出的DTSH-CW实现了有希望的性能。(c)2021 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第7期|302-315|共14页
  • 作者单位

    Ocean Univ China Coll Informat Sci & Engn Qingdao Peoples R China;

    Ocean Univ China Coll Informat Sci & Engn Qingdao Peoples R China|Pilot Natl Lab Marine Sci & Technol Qingdao Peoples R China;

    Ocean Univ China Coll Informat Sci & Engn Qingdao Peoples R China|Pilot Natl Lab Marine Sci & Technol Qingdao Peoples R China;

    Ocean Univ China Coll Informat Sci & Engn Qingdao Peoples R China;

    Ocean Univ China Coll Informat Sci & Engn Qingdao Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-label image retrieval; Deep hashing; Top similarity; Gaussian distribution; Two-stage optimization;

    机译:多标签图像检索;深度散列;顶级相似;高斯分布;两阶段优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号