首页> 外文期刊>Quality Control, Transactions >A Modified Maximal Divergence Sequential Auto-Encoder and Time Delay Neural Network Models for Vulnerable Binary Codes Detection
【24h】

A Modified Maximal Divergence Sequential Auto-Encoder and Time Delay Neural Network Models for Vulnerable Binary Codes Detection

机译:修改的最大分流顺序自动编码器和易受攻击二进制代码检测的时间延迟神经网络模型

获取原文
获取原文并翻译 | 示例

摘要

Since the risks associated with software vulnerabilities are rapidly increasing, the detection of vulnerabilities in binary code has become an important area of concern for the software community. However, research studies associated with the detection of vulnerabilities in binary code remain limited to the handcrafted features referenced by a specific group of experts in the field. This paper considers other possibilities to add on the subject of detecting vulnerabilities in binary code. Herein, we utilize recent studies conducted on the topic of deep learning and specifically study a maximal divergence sequential auto-encoder (MDSAE) model to propose a modified version (MDSAE-NR). We also propose an altered interpretation of time-delay neural network (TDNN-NR) by incorporating a new regularization technique that produced optimized results. Finally, both models achieved good predictive performance using different evaluation metrics such as accuracy, recall, precision and F1 score compared to the baseline results. Based on the results of our experiments, we observed a 2 to 2.5 & x0025; average improvement in each performance measure of interest.
机译:由于与软件漏洞相关的风险迅速增加,因此二进制代码中的漏洞的检测已成为软件社区关注的重要领域。然而,与二进制代码中漏洞的检测相关的研究研究仍然仅限于该领域特定专家组参考的手工制作功能。本文考虑在二进制代码中检测漏洞的主题添加其他可能性。在此,我们利用最近对深度学习主题进行的研究,并具体研究了一种最大分歧顺序自动编码器(MDSAE)模型,以提出修改的版本(MDSAe-NR)。我们还通过结合产生优化结果的新正则化技术提出了对时滞神经网络(TDNN-NR)的改变的解释。最后,两种模型都使用不同的评估指标实现了良好的预测性能,例如准确性,召回,精度和F1分数与基线结果相比。根据我们的实验结果,我们观察了2至2.5&x0025;每个绩效衡量衡量标准的平均改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号