首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Anomaly Detection of Time Series With Smoothness-Inducing Sequential Variational Auto-Encoder
【24h】

Anomaly Detection of Time Series With Smoothness-Inducing Sequential Variational Auto-Encoder

机译:异常检测时间序列与光滑诱导顺序变分自动编码器

获取原文
获取原文并翻译 | 示例

摘要

Deep generative models have demonstrated their effectiveness in learning latent representation and modeling complex dependencies of time series. In this article, we present a smoothness-inducing sequential variational auto-encoder (VAE) (SISVAE) model for the robust estimation and anomaly detection of multidimensional time series. Our model is based on VAE, and its backbone is fulfilled by a recurrent neural network to capture latent temporal structures of time series for both the generative model and the inference model. Specifically, our model parameterizes mean and variance for each time-stamp with flexible neural networks, resulting in a nonstationary model that can work without the assumption of constant noise as commonly made by existing Markov models. However, such flexibility may cause the model fragile to anomalies. To achieve robust density estimation which can also benefit detection tasks, we propose a smoothness-inducing prior over possible estimations. The proposed prior works as a regularizer that places penalty at nonsmooth reconstructions. Our model is learned efficiently with a novel stochastic gradient variational Bayes estimator. In particular, we study two decision criteria for anomaly detection: reconstruction probability and reconstruction error. We show the effectiveness of our model on both synthetic data sets and public real-world benchmarks.
机译:深度生成模型在学习潜在代表和建模的时间序列依赖性方面表现出了它们的有效性。在本文中,我们介绍了用于多维时间序列的鲁棒估计和异常检测的平滑诱导的顺序变分自动编码器(VAE)模型。我们的模型基于VAE,其骨干由经常性神经网络实现,以捕获生成模型和推理模型的时间序列的潜在时间结构。具体而言,我们的模型参数化每个时间戳的每个时间戳的均值和方差,导致非标题模型可以在不受现有的马尔可夫模型通常制造的恒定噪声的情况下工作。然而,这种灵活性可能导致模型易于异常。为了实现可能有利于检测任务的强大密度估计,我们提出了在可能的估计上之前的平滑诱导。建议的先前作品作为符合因子的常规器,该规则器在非现场重建时处于惩罚。我们的模型与新型随机梯度变分贝叶斯估计有效学习。特别是,我们研究了异常检测的两个决定标准:重建概率和重建误差。我们展示了我们在合成数据集和公共现实世界基准上的模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号