首页> 外文期刊>Programming and Computer Software >Toward Constructing a Modular Model of Distributed Intelligence
【24h】

Toward Constructing a Modular Model of Distributed Intelligence

机译:致力于构建分布式智能的模块化模型

获取原文
获取原文并翻译 | 示例

摘要

Multi-agent social systems (MASSes) are systems of autonomous interdependent agents, each pursuing its own goals and interacting with other agents and environment. The dynamics of the MASS cannot be adequately modeled by the methods borrowed from statistical physics because these methods do not reflect the main feature of social systems, viz., their ability to percept, process, and use external information. This important quality of distributed (swarm) intelligence has to be directly taken into account in a correct theoretical description of social systems. However, discussion of distributed intelligence (DI) in the literature is mostly restricted to distributed tasks, information exchange, and aggregated judgment, i.e., to the sum or average of independent intellectual activities. This approach ignores the empirically well-known phenomenon of collective insight in a group, which is a specific manifestation of MASS DI. In this paper, the state of art in modeling social systems and investigating intelligence per se is briefly characterized and a new modular model of intelligence is proposed. This model makes it possible to reproduce the most important result of intellectual activity, viz., the creation of new information, which is not reflected in the contemporary schemes (e.g., neural networks). In the framework of the modular approach, the correspondence between individual intelligence and MASS DI is discussed and prospective directions for future research are outlined. The efficiency of DI is estimated numerically by computer simulation of a simple system of agents with variable kinematic parameters (k(i)) that move through a pathway with obstacles. Selection of fast agents with a positive mutation of the parameters provides ca. 20% reduction in the average passing time after 200-300 generations and creates a swarm movement whereby agents follow a leader and cooperatively avoid obstacles.
机译:多主体社会系统(MASSes)是自主相互依赖的主体系统,每个主体都追求自己的目标并与其他主体和环境进行交互。由于不能从统计物理学中借用方法来对MASS的动力学进行充分建模,因为这些方法不能反映社会系统的主要特征,即其感知,处理和使用外部信息的能力。在对社会系统进行正确的理论描述时,必须直接考虑这种重要的分布式(群体)情报质量。但是,文献中对分布式智能(DI)的讨论主要限于分布式任务,信息交换和综合判断,即独立智力活动的总和或平均值。这种方法忽略了集体中集体经验的经验上众所周知的现象,这是MASS DI的具体体现。在本文中,简要描述了社会系统建模和情报本身研究的最新状况,并提出了一种新的情报模块化模型。这种模型可以重现智力活动的最重要结果,即创造新信息,而这在现代方案(例如神经网络)中没有体现出来。在模块化方法的框架中,讨论了个人智能与MASS DI之间的对应关系,并概述了未来研究的未来方向。通过具有可变运动学参数(k(i))的简单智能体系统的计算机仿真,可以通过数字方式模拟DI的效率,该运动学参数通过具有障碍物的路径移动。选择具有参数正突变的快速药物可提供约。 200-300代后,平均通过时间减少20%,并形成群体移动,特工跟随领导者并协作避开障碍物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号