首页> 外文期刊>Process safety progress >Optimization of Process Alarm Thresholds: A Multidimensional Kernel Density Estimation Approach
【24h】

Optimization of Process Alarm Thresholds: A Multidimensional Kernel Density Estimation Approach

机译:过程警报阈值的优化:多维内核密度估计方法

获取原文
获取原文并翻译 | 示例

摘要

Rationality of alarm systems enormously impacts safety and economic performances of process plants, which definitely demands for process alarm threshold optimization. In this work, first, we analyze the assignable causes of missed alarms and false alarms from the probability theory perspectives before formulating corresponding calculation metrics based on Bayesian Inference. Then, we minimize missed alarm probability (MAP) and false alarm probability (FAP) in a multidimensional space, where the kernel density estimation method is invoked to estimate joint probability density functions using process historical data. Mathematical models associated with multivariable process alarm threshold optimization are established on the basis of density functions, and gradient descent algorithms are employed to achieve advisable alarm thresholds. An industrial application shows that this approach effectively reduces MAP of the plant, as well as lowers FAP to a relatively reasonable level.
机译:警报系统的合理性极大地影响了过程工厂的安全和经济性能,这无疑需要优化过程警报阈值。在这项工作中,首先,我们从概率论的角度分析错过警报和错误警报的可分配原因,然后根据贝叶斯推理制定相应的计算指标。然后,我们将多维空间中的误报警概率(MAP)和误报警概率(FAP)最小化,在其中调用核密度估计方法以使用过程历史数据来估计联合概率密度函数。在密度函数的基础上,建立了与多变量过程警报阈值优化相关的数学模型,并采用梯度下降算法来实现适当的警报阈值。工业应用表明,该方法可有效降低工厂的MAP,并将FAP降低至相对合理的水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号