【24h】

Microfluidics without microfabrication

机译:没有微加工的微流体

获取原文
获取原文并翻译 | 示例
       

摘要

Microfluidic devices create spatially defined, chemically controlled environments at microscopic dimensions. We demonstrate the formation and control of microscopic hydrodynamic and chemical environments by impinging a low-intensity acoustic oscillation on a cylindrical electrode. The interaction of small-amplitude (≤203 m), low-frequency (≤515 Hz) fluid oscillations with a submilli-meter cylinder creates four microscopic eddies that circulate adjacent to the cylinder. This steady flow is known as acoustic streaming. Because the steady circulation in the eddies has closed streamlines, reagent dosed from the electrode can escape the eddies only by slow molecular diffusion. As a result, reagent dosing rates of 10 nmol/s produce eddy concentrations as high as 8 mM, without a correspondingly large rise in bulk solution composition. Imaging Raman spectroscopy is used to visualize the eddy concentration distribution for various acoustic oscillation conditions, and point Raman spectra are used to quantify eddy compositions. These results, and corresponding numerical simulations, show that each eddy acts as a microchemical trap with size determined by acoustic frequency and the concentration tuned via reagent dosing rate and acoustic amplitude. Low-intensity acoustic streaming flows can serve as microfluidic elements without the need for microfabrication.
机译:微流控设备可在微观尺寸上创建空间定义的化学控制环境。我们通过在圆柱电极上撞击低强度声波振荡来演示微观水动力和化学环境的形成和控制。小振幅(≤203m),低频(≤515Hz)流体振荡与亚毫米级圆柱体的相互作用产生了四个在圆柱体附近循环的微观涡流。这种稳定的流动称为声流。由于涡流中的稳定循环具有闭合的流线,因此从电极注入的试剂只能通过缓慢的分子扩散才能逸出涡流。结果,试剂定量给料速率为10 nmol / s时产生的涡流浓度高达8 mM,而本体溶液的组成却没有相应的大幅度增加。成像拉曼光谱用于可视化各种声学振荡条件下的涡流浓度分布,点拉曼光谱用于量化涡流成分。这些结果和相应的数值模拟表明,每个涡流均充当微化学阱,其大小由声频确定,其浓度由试剂加药速率和声幅调节。低强度声流流可以用作微流体元件,而无需微加工。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号