首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >One-dimensional hole gas in germanium/silicon nanowire heterostructures
【24h】

One-dimensional hole gas in germanium/silicon nanowire heterostructures

机译:锗/硅纳米线异质结构中的一维空穴气体

获取原文
获取原文并翻译 | 示例
       

摘要

Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spac-ings agree with calculations for a cylindrical confinement potential. In addition, we observe a "0.7 structure," which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.
机译:通过带状结构设计和平面基板上的外延生长实现的二维电子和空穴气体系统已成为基础凝聚态物质研究和高性能器件的关键平台。通过在一维纳米结构基底上的受控生长,一维(1D)电子或空穴气体系统的类似开发尚未实现,这可能会为现有的碳纳米管和纳米线系统提供更多的机会。在这里,我们报告基于独立的锗/硅(Ge / Si)核/壳纳米线异质结构的一维空穴气系统的合成和传输研究。与单组分纳米线的对照实验相比,室温电迁移测量清楚地表明了未掺杂的Ge / Si纳米线异质结构中的空穴积累。低温研究表明,当Si壳层成为Ge通道中空穴气体的隧道壁垒时,可控的库仑阻塞振荡得到很好的控制。通过热退火也可再现地实现与空穴气体的透明接触。在此类设备中,我们观察到低温下的电导量化,这与通过一维子带的弹道传输相对应,其中测得的子带能量间距与圆柱约束电位的计算结果一致。此外,我们观察到“ 0.7结构”已归因于自发自旋极化,表明此现象在相互作用的一维系统中具有普遍性。最后,电导对温度的依赖性很小,这与我们对这种一维系统中减少的反向散射的计算相一致,并且表明即使在室温下,传输也是弹道的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号