首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Structure, function, and self-assembly of single network gyroid (I4_132) photonic crystals in butterfly wing scales
【24h】

Structure, function, and self-assembly of single network gyroid (I4_132) photonic crystals in butterfly wing scales

机译:蝴蝶翼尺度中单网络螺旋(I4_132)光子晶体的结构,功能和自组装

获取原文
获取原文并翻译 | 示例
       

摘要

Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4_132) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d). as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reti-culum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs.-The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration.
机译:复杂的三维生物光子纳米结构可产生许多蝴蝶翅膀鳞片的生动结构颜色,但它们的确切纳米级组织尚不确定。我们在单个尺度上使用小角度X射线散射(SAXS)来表征来自两个科(Papilionidae,Lycaenidae)的五个蝴蝶物种的3D光子纳米结构。我们将这些几丁质和空气纳米结构确定为单网络螺旋(I4_132)光子晶体。我们从SAXS数据和光子带隙模型描述它们的光学功能。蝴蝶显然是通过利用生物脂质双层膜的自组织物理动力学来生长这些螺旋状纳米结构的。这些蝴蝶光子纳米结构最初在鳞片细胞内发展为核-壳双螺旋状(Ia3d)。如在嵌段共聚物系统中所见,具有五连续的体积,包括细胞外空间,细胞质膜,细胞质,平滑内质网(SER)膜和SER内腔。随后,通过甲壳质在细胞外空间中的沉积以及细胞其余部分的变性,该双重螺旋状纳米结构被转变成单个螺旋状网络。蝴蝶开发出了热力学上受欢迎的双螺旋状前驱体,作为通向光学效率更高的单螺旋状纳米结构的途径。当前的光子晶体工程方法也旨在产生单个螺旋状基序。-此处表征的生物衍生的光子纳米结构可为基于仿生或直接介电渗透的光学器件生产提供方便的模板。

著录项

  • 来源
  • 作者单位

    Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven,CT 06511 Center for Research on Interface Structures and Phenomena, Yale University, New Haven,CT 06511;

    rnCenter for Research on Interface Structures and Phenomena, Yale University, New Haven,CT 06511 Department of Chemical Engineering, Yale University, New Haven,CT 06511 School of Engineering and Applied Science, Yale University, New Haven,CT 06511;

    rnCenter for Research on Interface Structures and Phenomena, Yale University, New Haven,CT 06511 School of Engineering and Applied Science, Yale University, New Haven,CT 06511 Department of Physics, Yale University, New Haven,CT 06511;

    rnCenter for Research on Interface Structures and Phenomena, Yale University, New Haven,CT 06511 School of Engineering and Applied Science, Yale University, New Haven,CT 06511;

    rnAdvanced Photon Source, Argonne National Laboratory, Argonne, IL 60439;

    rnAdvanced Photon Source, Argonne National Laboratory, Argonne, IL 60439;

    rnCenter for Research on Interface Structures and Phenomena, Yale University, New Haven,CT 06511 School of Engineering and Applied Science, Yale University, New Haven,CT 06511 Department of Physics, Yale University, New Haven,CT 06511 Department of Mechanical Engineering, Yale University, New Haven, CT 06511;

    rnDepartment of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven,CT 06511 Center for Research on Interface Structures and Phenomena, Yale University, New Haven,CT 06511;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biologica; meta-materials; organismal color; biomimetics; biological cubic mesophases;

    机译:生物制剂超材料机体颜色;仿生;生物立方中间相;
  • 入库时间 2022-08-18 00:41:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号