首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Structure function and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales
【2h】

Structure function and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales

机译:蝴蝶翼秤中单网络螺旋(I4132)光子晶体的结构功能和自组装

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4132) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration.
机译:复杂的三维生物光子纳米结构可产生许多蝴蝶翅膀鳞片的生动结构颜色,但它们的确切纳米级组织尚不确定。我们在单个尺度上使用小角度X射线散射(SAXS)来表征来自两个科(Papilionidae,Lycaenidae)的五个蝴蝶物种的3D光子纳米结构。我们将这些几丁质和空气纳米结构确定为单网络螺旋(I4132)光子晶体。我们从SAXS数据和光子带隙模型描述它们的光学功能。蝴蝶显然是通过利用生物脂质双层膜的自组织物理动力学来生长这些螺旋状纳米结构的。如在嵌段共聚物系统中所见,这些蝴蝶光子纳米结构最初在鳞片细胞内发展为核壳双螺旋状(Ia3d),其五连续体积由细胞外空间,细胞质膜,细胞质,平滑内质网(SER)组成膜和SER内部腔。随后,通过甲壳质在细胞外空间中的沉积以及细胞其余部分的变性,该双重螺旋状纳米结构被转变成单个螺旋状网络。蝴蝶开发出了热力学上受欢迎的双螺旋状前驱体,作为通向光学效率更高的单螺旋状纳米结构的途径。当前的光子晶体工程方法也旨在产生单个回旋图案。本文表征的生物衍生的光子纳米结构可以为基于仿生或直接介电渗透的光学器件生产提供方便的模板。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号