首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Rewiring hydrogenase-dependent redox circuits in cyanobacteria
【24h】

Rewiring hydrogenase-dependent redox circuits in cyanobacteria

机译:重新连接蓝细菌中依赖于氢酶的氧化还原电路

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrogenases catalyze the reversible reaction 2H+ + 2e~ <-> H2 with an equilibrium constant that is dependent on the reducing potential of electrons carried by their redox partner. To examine the possibility of increasing the photobiological production of hydrogen within cyanobacterial cultures, we expressed the [FeFe] hydrogenase, HydA, from Clostridium acetobutylicum in the non-nitrogen-fixing cyanobacterium Synechococcus elongatus sp. 7942. We demonstrate that the heterologously expressed hydrogenase is functional in vitro and in vivo, and that the in vivo hydrogenase activity is connected to the light-dependent reactions of the electron transport chain. Under anoxic conditions, HydA activity is capable of supporting light-dependent hydrogen evolution at a rate >500-fold greater than that supported by the endogenous [NiFe] hydrogenase. Furthermore, HydA can support limited growth solely using H2 and light as the source of reducing equivalents under conditions where Photosystem II is inactivated. Finally, we demonstrate that the addition of exogenous ferredoxins can modulate redox flux in the hydrogenase-expressing strain, allowing for greater hydrogen yields and for dark fermentation of internal energy stores into hydrogen gas.
机译:氢化酶以平衡常数催化可逆反应2H + + 2e〜H 2,该平衡常数取决于其氧化还原伴侣携带的电子的还原电势。为了检验在蓝细菌培养物中增加氢的光生物产生的可能性,我们在非固氮蓝细菌细长突触球菌中表达了丙酮丁醇梭菌的[FeFe]氢化酶HydA。 7942。我们证明了异源表达的氢化酶在体外和体内均具有功能,并且体内的氢化酶活性与电子传输链的光依赖性反应有关。在缺氧条件下,HydA活性能够以高于内源[NiFe]氢化酶支持的速率> 500倍的速率支持光依赖性氢的释放。此外,HydA在光系统II灭活的条件下,仅使用H2和光作为还原当量的来源就可以支持有限的生长。最后,我们证明了添加外源铁氧还蛋白可以调节表达加氢酶的菌株中的氧化还原通量,从而允许更高的氢气产量以及内部能量储存装置暗发酵为氢气的过程。

著录项

  • 来源
  • 作者单位

    Department of Systems Biology, Harvard Medical School, Boston, MA 02115 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115;

    School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;

    Department of Systems Biology, Harvard Medical School, Boston, MA 02115 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biofuel; metabolic engineering;

    机译:生物燃料代谢工程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号