【24h】

Full dynamics of a red blood cell in shear flow

机译:剪切流中红细胞的全部动力学

获取原文
获取原文并翻译 | 示例
       

摘要

At the cellular scale, blood fluidity and mass transport depend on the dynamics of red blood cells in blood flow, specifically on their deformation and orientation. These dynamics are governed by cellular rheological properties, such as internal viscosity and cytoskeleton elasticity. In diseases in which cell rheology is altered genetically or by parasitic invasion or by changes in the microen-vironment, blood flow may be severely impaired. The nonlinear interplay between cell rheology and flow may generate complex dynamics, which remain largely unexplored experimentally. Under simple shear flow, only two motions, "tumbling" and "tank-treading," have been described experimentally and relate to cell mechanics. Here, we elucidate the full dynamics of red blood cells in shear flow by Coupling two videomicroscopy approaches providing multidirectional pictures of cells, and we analyze the mechanical origin of the observed dynamics. We show that contrary to common belief, when red blood cells flip into the flow, their orientation is determined by the shear rate. We discuss the "rolling" motion, similar to a rolling wheel. This motion, which permits the cells to avoid energetically costly deformations, is a true signature of the cytoskeleton elasticity. We highlight a hysteresis cycle and two transient dynamics driven by the shear rate: an intermittent regime during the "tank-treading-to-f lipping" transition and a Fris-bee-like "spinning" regime during the "rolling-to-tank-treading" transition. Finally, we reveal that the biconcave red cell shape is highly stable under moderate shear stresses, and we interpret this result in terms of stress-free shape and elastic buckling.
机译:在细胞规模上,血液的流动性和质量传输取决于血流中红细胞的动力学,特别是其变形和方向。这些动力学受细胞流变特性的控制,例如内部粘度和细胞骨架弹性。在通过细胞遗传学或寄生虫入侵或微环境变化而改变细胞流变学的疾病中,血流可能受到严重损害。细胞流变性和流动之间的非线性相互作用可能会产生复杂的动力学,而在实验上仍未得到充分探索。在简单的剪切流作用下,仅通过实验描述了两个运动,即“翻滚”和“踩踏”,它们与细胞力学有关。在这里,我们通过耦合提供细胞多方向图片的两种视频显微镜方法来阐明剪切流中红细胞的全部动力学,并分析观察到的动力学的机械起源。我们证明,与通常的看法相反,当红细胞翻转进入血流时,其方向由剪切速率决定。我们讨论类似于滚轮的“滚动”运动。这种运动使细胞避免了能量上高昂的变形,是细胞骨架弹性的真正标志。我们重点介绍了一个磁滞循环和两个受剪切速率驱动的瞬态动力学:“从油箱踩踏到F滑行”过渡期间的间歇状态,以及“从油箱踩踏到F滑行”期间类似飞盘的“自旋”状态-treading”过渡。最后,我们揭示了双凹红细胞的形状在中等剪切应力下是高度稳定的,我们用无应力的形状和弹性屈曲来解释这一结果。

著录项

  • 来源
  • 作者单位

    Aix Marseille Universite, Centre National de la Recherche Scientifique, Laboratoire Adhesion et Inflammation Unite Mixte de Recherche 7333, Inserm UMR1067, 13009 Marseille, France;

    Aix Marseille Universite, Centre National de la Recherche Scientifique, Laboratoire Adhesion et Inflammation Unite Mixte de Recherche 7333, Inserm UMR1067, 13009 Marseille, France;

    Aix Marseille Universite, Centre National de la Recherche Scientifique, Laboratoire Adhesion et Inflammation Unite Mixte de Recherche 7333, Inserm UMR1067, 13009 Marseille, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    elastic capsule; low reynolds number; shape memory; erythrocyte;

    机译:弹性胶囊雷诺数低;形状记忆红血球;
  • 入库时间 2022-08-18 00:40:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号