首页> 外文期刊>Proceedings of the institution of mechanical engineers. Part N, Journal of nanoengineering and nanosystems >Finite element simulation of unsteady magneto-hydrodynamic transport phenomena on a stretching sheet in a rotating nanofluid
【24h】

Finite element simulation of unsteady magneto-hydrodynamic transport phenomena on a stretching sheet in a rotating nanofluid

机译:旋转纳米流体中拉伸片上非稳态磁流体动力传输现象的有限元模拟

获取原文
获取原文并翻译 | 示例

摘要

This study examines theoretically and computationally the transient magneto-hydrodynamic boundary layer flow and heat transfer in an incompressible rotating nanofluid over a stretching continuous sheet, with a transverse magnetic field applied normal to the sheet plane. The three-dimensional conservation equations for mass, momentum, energy and species (nanoparticle) diffusion, are normalized into a system of two-dimensional dimensionless boundary layer equations, using appropriate scaling transformations. The resulting nanofluid transport model incorporates a Brownian motion parameter, thermophoresis parameter, rotation parameter, unsteady parameter, Prandtl number, Hartmann magnetic parameter and Lewis number, and physically realistic boundary conditions at the sheet surface and in the free stream. The nonlinear two-point boundary value problem is solved using a robust, efficient finite element method based on the variational formulation. A detailed evaluation of the effects of the governing physical parameters on the velocity components, temperature and nanoparticle concentration via graphical plots is conducted. Primary velocity is strongly retarded with increasing Hartmann number and there is also a reduction in secondary velocity magnitude. Both temperature and nanoparticle concentration are positively affected by the Hartmann number. Increasing rotational parameter decreases both primary and secondary velocity, and also depresses temperature and nanoparticle concentration. Unsteadiness parameter is generally found to enhance primary velocity and temperatures but exhibits a varied influence on secondary velocity and nanoparticle concentration. The reduced Nusselt number (wall temperature gradient) is observed to be depressed with both Brownian motion and thermophoresis effects, whereas the contrary behaviour is computed for the reduced Sherwood number (wall mass transfer gradient). The reduced Nusselt number and the Sherwood number also show a steady decrease with increasing rotational parameter. The present finite element method solutions have been validated extensively with the previously published results, demonstrating excellent correlation. The study has important applications in the manufacture and electromagnetic control of complex magnetic nanofluid materials of relevance to biomedical, energy systems and aerospace systems technologies.
机译:这项研究从理论上和计算上研究了在拉伸的连续片材上不可压缩的旋转纳米流体中的瞬态磁流体动力学边界层流动和传热,并且垂直于片材平面施加了横向磁场。使用适当的缩放变换,将质量,动量,能量和物质(纳米粒子)扩散的三维守恒方程归一化为二维无量纲边界层方程组。所得的纳米流体传输模型结合了布朗运动参数,热泳参数,旋转参数,非稳态参数,普朗特数,哈特曼磁参数和刘易斯数,以及板表面和自由流中的实际边界条件。基于变分公式,使用鲁棒,有效的有限元方法解决了非线性两点边值问题。通过图形化图表详细评估了控制物理参数对速度分量,温度和纳米颗粒浓度的影响。随着Hartmann数的增加,初级速度受到强烈阻碍,并且次级速度幅度也减小了。温度和纳米粒子浓度都受到哈特曼数的正影响。旋转参数的增加会降低初级和次级速度,还会降低温度和纳米粒子的浓度。通常发现不稳定参数提高了初速度和温度,但对次级速度和纳米粒子浓度表现出不同的影响。减少的努塞尔特数(壁温梯度)被布朗运动和热泳效应所抑制,而对于减少的舍伍德数(壁传质梯度)则计算出相反的行为。随着旋转参数的增加,减小的Nusselt数和Sherwood数也显示出稳定的下降。目前的有限元方法解决方案已得到先前发表的结果的广泛验证,证明了极好的相关性。该研究在与生物医学,能源系统和航空航天系统技术相关的复杂磁性纳米流体材料的制造和电磁控制中具有重要的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号