首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers. Part K, Journal of Multi-body Dynamics >Development of multibody dynamical using MR damper based semi-active bio-inspired chaotic fruit fly and fuzzy logic hybrid suspension control for rail vehicle system
【24h】

Development of multibody dynamical using MR damper based semi-active bio-inspired chaotic fruit fly and fuzzy logic hybrid suspension control for rail vehicle system

机译:基于MR阻尼器的半主动生物启发混沌果蝇和轨道车辆系统模糊逻辑混合悬架控制的多体动力学

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, the semi-active suspension in railway vehicles based on the controlled Magnetorheological (MR) fluid dampers is examined, and compared with the semi-active low and semi-active high suspension systems to enhance the running safety, ride quality and ride comfort for a high-speed rail vehicle. Fuzzy logic and chaotic fruit fly control techniques are used as system controllers to determine desired damping forces for front and rear bogie frame with force track-ability of system controllers. A 28 degrees of freedom (DoF) mathematical model of the rail vehicle is formulated using nonlinear vehicle suspension and nonlinear heuristic creep model. The Modified Dahl model is formulated to characterize the behavior of the MR damper. The simulation result is validated using the experimental results. Four different suspension strategies are proposed with MR damper i.e. passive, semi-active low, semi-active high and semi-active intelligent compound controller based on bio-inspired chaotic fruit and fuzzy logic hybrid controller. A comparison indicates that the semi-active controller gives the optimum performance based on frequency and time response analysis for comfort vibration actuation (9.088 to 15.33%), ride quality (14.81-20.73%) and comfort (24.91-27.81%) and it has little influence on derailment quotients, offload factors, as a result, it will not endanger the running safety of rail vehicle.
机译:在本文中,研究了基于受控磁流变(MR)流体阻尼器的铁路车辆中的半主动悬架,并与半主动低和半主动高悬架系统进行比较,以增强运行安全,乘坐质量和骑行高速铁路车辆的舒适。模糊逻辑和混沌果蝇控制技术用作系统控制器,以确定前后转向架框架的所需阻尼力,具有系统控制器的力跟踪能力。使用非线性车辆悬架和非线性启发式蠕变模型制定了28度的自由度(DOF)轨道车辆的数学模型。修改的DAHL模型被配制成表征MR阻尼器的行为。使用实验结果验证仿真结果。提出了四种不同的悬架策略,提出了MR Damper I.e.S.Sive,半主动低,半主动高和半主动智能化合物控制器,基于生物启发混沌水果和模糊逻辑混合控制器。比较表明,半主动控制器基于舒适振动致动的频率和时间响应分析提供了最佳性能(9.088至15.33%),乘坐质量(14.81-20.73%)和舒适性(24.91-27.81%)对脱轨的影响很小,因此,卸载因素,它不会危及轨道车辆的运行安全。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号