...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Industrial robot path planning in a constraint-based computer-aided design and kinematic analysis environment
【24h】

Industrial robot path planning in a constraint-based computer-aided design and kinematic analysis environment

机译:基于约束的计算机辅助设计和运动学分析环境中的工业机器人路径规划

获取原文
获取原文并翻译 | 示例
           

摘要

Paths of industrial robots are easier to plan by using constraints on accurate computer-aided design (CAD) models of both objects representing the real industrial robotic cell and virtual objects representing the auxiliary geometry that is necessary to define path points. The motion path normally needs to be split into segments possessing uniform characteristics, e.g. common active joints, at points usually corresponding to position or velocity extremes. Each segment corresponds either to point-to-point motion or to constrained motion. Point-to-point motion is implemented by interpolating between original and final position of each joint separately, positions being determined through inverse kinematics in the CAD environment and motion being imparted to each joint directly. Constrained motion may be defined using several alternatives materialized with stationary and moving virtual objects, real robot joints, virtual joints, contact constraints, and motion constraints. Motion duration is specified after the corresponding path geometry has been specified, by exploiting maximum active joints velocity as well as end-tool velocity as dictated by the process. Collisions are detected using available functionality and are alleviated interactively. A user-defined number of interpolated robot poses are generated per segment. These are all 'sewn' together at the motion synthesis stage and frame-based simulation is generated. A realistic robotic lathe loading/unloading example is used to verify the use of the above notions and tools. [PUBLICATION ABSTRACT]
机译:通过对代表真实工业机器人单元的对象和代表定义路径点所需的辅助几何形状的虚拟对象的精确计算机辅助设计(CAD)模型进行约束,可以更轻松地规划工业机器人的路径。通常需要将运动路径分成具有统一特性的段,例如常见的活动关节,通常在对应于位置或速度极限的点上。每个段要么对应于点对点运动,要么对应于约束运动。点对点运动是通过分别在每个关节的原始位置和最终位置之间进行插值来实现的,这些位置是通过CAD环境中的逆运动学确定的,并且将运动直接传递给每个关节。可以使用固定化和移动化的虚拟对象,真实的机器人关节,虚拟关节,接触约束和运动约束实现的几种替代方法来定义约束运动。在指定了相应的路径几何形状之后,通过利用过程指定的最大活动关节速度以及最终工具速度来指定运动持续时间。使用可用功能检测冲突并以交互方式缓解冲突。每个段均生成用户定义数量的插值机器人姿势。在运动合成阶段将它们全部“缝合”在一起,并生成基于帧的仿真。一个实际的机器人车床装卸示例用于验证上述概念和工具的使用。 [出版物摘要]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号