【24h】

A multi-sensor data fusion navigation system for an unmanned surface vehicle

机译:用于无人水面飞行器的多传感器数据融合导航系统

获取原文
获取原文并翻译 | 示例

摘要

Worldwide there is an increasing interest in the development of unmanned surface vehicles (USVs). In order for such vehicles to undertake missions, they require accurate, robust, and reliable navigation systems. This paper describes the implementation of a fault tolerant autonomous navigation approach for a USV named Springer. An intelligent multi-sensor data fusion navigation algorithm is proposed that is based on a modified form of a federated Kalman filter (FKF) utilizing a fuzzy logic adaptive technique. The fuzzy adaptive technique is used to adjust the measurement noise covariance matrix R to fit the actual statistics of the noise profile present in the incoming sensor measured data using a covariance matching method. Information feedback factors employed in the FKF are tuned on the basis of the accuracy of each sensor. In order to compare the fault-tolerant performance, several fuzzy-logic-based cascaded Kalman filter architectures are also considered. Simulation results demonstrate the algorithm's capability under different types of sensor fault.
机译:在世界范围内,对无人水面飞行器(USV)的开发越来越感兴趣。为了使此类车辆执行任务,它们需要准确,强大且可靠的导航系统。本文介绍了名为Springer的USV的容错自主导航方法的实现。提出了一种基于模糊逻辑自适应技术的联邦卡尔曼滤波器(FKF)改进形式的智能多传感器数据融合导航算法。模糊自适应技术用于使用协方差匹配方法来调整测量噪声协方差矩阵R,以适合传入传感器测量数据中存在的噪声分布的实际统计数据。 FKF中使用的信息反馈因子是根据每个传感器的精度进行调整的。为了比较容错性能,还考虑了几种基于模糊逻辑的级联卡尔曼滤波器架构。仿真结果证明了该算法在不同类型的传感器故障下的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号