首页> 外文期刊>Probability Theory and Related Fields >Skorokhod decomposition of reflected diffusions on bounded Lipschitz domains with singular non-reflection part
【24h】

Skorokhod decomposition of reflected diffusions on bounded Lipschitz domains with singular non-reflection part

机译:具有奇异非反射部分的有界Lipschitz域上反射扩散的Skorokhod分解

获取原文
获取原文并翻译 | 示例

摘要

Let ${{overline{{G}}subset {{mathbb R}}^d}}$ be a compact set with interior G. Let ρ∈L 1 (G,dx), ρ>0 dx-a.e. on G, and m:=ρdx. Let A=(a ij ) be symmetric, and globally uniformly strictly elliptic on G. Let ρ be such that ${{{{{{mathcal E}}}}^r(f,g)=frac{{1}}{{2}}sum_{{i,j=1}}^{{d}}int_G a_{{ij}}partial_i f partial_j g,dm}}$ ; f, ${{gin C^{{infty}}(overline{{G}})}}$ , is closable in L 2 (G,m) with closure (ℰ r ,D(ℰ r )). The latter is fulfilled if ρ satisfies the Hamza type condition, or ∂ i ρ∈L 1 loc (G,dx), 1≤i≤d. Conservative, non-symmetric diffusion processes X t related to the extension of a generalized Dirichlet form ${{ {{{{mathcal E}}}}^r(f,g) -sum_{{i=1}}^{{d}}int_G rho^{{-1}}overline{{B}}_ipartial_i f, g, dm; f,gin D({{{{mathcal E}}}}^r)_b }}$ where ${{rho^{{-1}}(overline{{B}}_1,...,overline{{B}}_d)in L^2(G;{{mathbb R}}^d,m)}}$ satisfies ${{ sum_{{i=1}}^{{d}}int_G overline{{B}}_i partial_i f,dx =0quad {{rm{ for all}}} fin C^{{infty}}(overline{{G}}), }}$ are constructed and analyzed. If G is a bounded Lipschitz domain, ρ∈H 1,1 (G), and a ij ∈D(ℰ r ), a Skorokhod decomposition for X t is given. This happens through a local time that is uniquely associated to the smooth measure 1{ Tr (ρ)>0} dΣ, where Tr denotes the trace and Σ the surface measure on ∂G.
机译:设$ {{overline {{G}} subset {{mathbb R}} ^ d}} $是一个具有内部G的紧集。设ρ∈L1 (G,dx),ρ> 0 dx- e在G上,且m:=ρdx。令A =(a ij )是对称的,并且在G上全局一致地严格地呈椭圆形。令ρ为$ {{{{{{{mathcal E}}}}} r(f,g)= frac { {1}} {{2}} sum _ {{i,j = 1}} ^ {{d}} int_G a _ {{ij}} partial_i fpartial_j g,dm}} $; f,$ {{gin C ^ {{infty}}(overline {{G}})} $$可以在L 2 (G,m)中以闭合(ℰr ,D (ℰr ))。如果ρ满足Hamza型条件,或者∂i L∈L1 loc (G,dx),1≤i≤d,则满足后者。与广义Dirichlet形式$ {{{{{{{mathcal E}}}} ^ r(f,g)-sum _ {{i = 1}的扩展有关的保守,非对称扩散过程X t } ^ {{d}} int_G rho ^ {{-1}} overline {{B}} _ ipartial_i f,g,dm; f,gin D({{{{mathcal E}}}} ^ r)_b}} $其中$ {{rho ^ {{-1}}(overline {{B}} _ 1,...,overline {{ B}} _ d)in L ^ 2(G; {{mathbb R}} ^ d,m)}} $满足$ {{sum _ {{i = 1}} ^ {{d}} int_G overline {{B} }} _ipartial_i f,dx = 0quad {{rm {for all}}} fin C ^ {{infty}}(overline {{G}}),}} $被构造和分析。如果G是有界Lipschitz域,ρ∈H1,1 (G)和ij ∈D(ℰr ),则X t 的Skorokhod分解给出。这是通过与平滑度量1 { Tr (ρ)> 0} dΣ唯一相关的本地时间发生的,其中Tr表示轨迹,而Σ是∂G上的表面度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号