首页> 外文期刊>Probabilistic engineering mechanics >Using partial probability weighted moments and partial maximum entropy to estimate quantiles from censored samples
【24h】

Using partial probability weighted moments and partial maximum entropy to estimate quantiles from censored samples

机译:使用偏概率加权矩和偏最大熵来估计受检样本的分位数

获取原文
获取原文并翻译 | 示例

摘要

The maximum entropy principle constrained by probability weighted moments is an useful technique for unbiasedly and efficiently estimating the quantile function of a random variable from a sample of complete observations. However, censored or incomplete data are often encountered in engineering reliability and lifetime distribution analysis. This paper presents a new distribution free method for the estimation of the quantile function of a non-negative random variable using a censored sample of data, which is based on the principle of partial maximum entropy (MaxEnt) in which partial probability weighted moments (PPWMs) are used as constraints. Numerical results and practical examples presented in the paper confirm the accuracy and efficiency of the proposed partial MaxEnt quantile function estimation method for censored samples.
机译:受概率加权矩约束的最大熵原理是一种有用的技术,可用于从完整观测值的样本中无偏且有效地估计随机变量的分位数函数。但是,在工程可靠性和寿命分布分析中经常会遇到被检查或不完整的数据。本文提出了一种新的无分布方法,该方法基于部分最大熵(MaxEnt)原理(其中部分概率加权矩(PPWM)),使用数据审查样本估计非负随机变量的分位数函数)用作约束。数值结果和实际算例证实了所提出的部分MaxEnt分位数函数估计方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号