首页> 外文期刊>IEEE Transactions on Power Systems >A Comparative Study on Particle Swarm Optimization for Optimal Steady-State Performance of Power Systems
【24h】

A Comparative Study on Particle Swarm Optimization for Optimal Steady-State Performance of Power Systems

机译:基于粒子群算法的电力系统最佳稳态性能比较研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, three new particle swarm optimization (PSO) algorithms are compared with the state of the art PSO algorithms for the optimal steady-state performance of power systems, namely, the reactive power and voltage control. Two of the three introduced, the enhanced GPAC PSO and LPAC PSO, are based on the global and local-neighborhood variant PSOs, respectively. They are hybridized with the constriction factor approach together with a new operator, reflecting the physical force of passive congregation observed in swarms. The third one is based on a new concept of coordinated aggregation (CA) and simulates how the achievements of particles can be distributed in the swarm affecting its manipulation. Specifically, each particle in the swarm is attracted only by particles with better achievements than its own, with the exception of the particle with the best achievement, which moves randomly as a "crazy" agent. The obtained results by the enhanced general passive congregation (GPAC), local passive congregation (LPAC), and CA on the IEEE 30-bus and IEEE 118-bus systems are compared with an interior point (IP)-based OPF algorithm, a conventional PSO algorithm, and an evolutionary algorithm (EA), demonstrating the excellent performance of the proposed PSO algorithms
机译:本文将三种新的粒子群优化(PSO)算法与最新的PSO算法进行比较,以获取电力系统的最佳稳态性能,即无功和电压控制。引入的三个方法中的两个,即增强型GPAC PSO和LPAC PSO,分别基于全局变量和局部邻居变量PSO。它们与收缩因子方法以及新的操作员混合使用,反映了在群中观察到的被动集会的物理力。第三个基于协同聚集(CA)的新概念,并模拟了粒子的成就如何在群体中分布,从而影响其操作。具体而言,群体中的每个粒子仅被具有比其自身更好的成就的粒子吸引,除了具有最佳成就的粒子作为“疯狂”代理随机移动之外。将通过在IEEE 30总线和IEEE 118总线系统上的增强型通用无源聚合(GPAC),本地无源聚合(LPAC)和CA所获得的结果与基于内部点(IP)的OPF算法进行比较,该算法是常规的PSO算法和一种进化算法(EA),证明了所提出的PSO算法的出色性能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号