首页> 外文期刊>IEEE Transactions on Power Systems >Classification, Filtering, and Identification of Electrical Customer Load Patterns Through the Use of Self-Organizing Maps
【24h】

Classification, Filtering, and Identification of Electrical Customer Load Patterns Through the Use of Self-Organizing Maps

机译:通过使用自组织图来分类,过滤和识别电气客户负载模式

获取原文
获取原文并翻译 | 示例

摘要

Different methodologies are available for clustering purposes. The objective of this paper is to review the capacity of some of them and specifically to test the ability of self-organizing maps (SOMs) to filter, classify, and extract patterns from distributor, commercializer, or customer electrical demand databases. These market participants can achieve an interesting benefit through the knowledge of these patterns, for example, to evaluate the potential for distributed generation, energy efficiency, and demand-side response policies (market analysis). For simplicity, customer classification techniques usually used the historic load curves of each user. The first step in the methodology presented in this paper is anomalous data filtering: holidays, maintenance, and wrong measurements must be removed from the database. Subsequently, two different treatments (frequency and time domain) of demand data were tested to feed SOM maps and evaluate the advantages of each approach. Finally, the ability of SOM to classify new customers in different clusters is also examined. Both steps have been performed through a well-known technique: SOM maps. The results clearly show the suitability of this approach to improve data management and to easily find coherent clusters between electrical users, accounting for relevant information about weekend demand patterns
机译:有多种方法可用于聚类。本文的目的是回顾其中一些功能,尤其是测试自组织映射(SOM)从分销商,商业化或客户用电需求数据库中过滤,分类和提取模式的能力。这些市场参与者可以通过了解这些模式来获得有趣的收益,例如,评估分布式发电,能源效率和需求方响应策略(市场分析)的潜力。为简单起见,客户分类技术通常使用每个用户的历史负荷曲线。本文介绍的方法的第一步是异常数据过滤:必须从数据库中删除假期,维护和错误的度量。随后,测试了需求数据的两种不同处理方式(频域和时域)以提供SOM映射并评估每种方法的优势。最后,还检查了SOM对不同集群中的新客户进行分类的能力。这两个步骤都是通过一种众所周知的技术执行的:SOM映射。结果清楚地表明,此方法适用于改善数据管理并轻松找到电力用户之间的连贯集群,并考虑了有关周末需求模式的相关信息

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号