首页> 外文期刊>Power Systems, IEEE Transactions on >A New Index and Classification Approach for Load Pattern Analysis of Large Electricity Customers
【24h】

A New Index and Classification Approach for Load Pattern Analysis of Large Electricity Customers

机译:大型电力用户负荷模式分析的新指标和分类方法

获取原文
获取原文并翻译 | 示例

摘要

Conducting load pattern analysis is an important task in obtaining typical load profiles (TLPs) of customers and grouping them into classes according to their load characteristics. When using clustering techniques to obtain the load patterns of electricity customers, choosing a suitable clustering algorithm and determining an appropriate cluster number are always important and difficult issues. Therefore, this paper proposes a stability index for choosing the most suitable clustering algorithm and a priority index (based on the stability index) for determining the priority rank of clusters. Based on three known clustering algorithms, an analysis approach is presented to demonstrate the use of these indices. In the approach, all load curves of customers are first clustered with the clustering algorithms under a serial given number of clusters. The two above-mentioned indices are then calculated. Following this, the most suitable clustering algorithm is chosen and the optimal number of clusters can be determined from the rank list for special application purposes. A case study with large electricity customers connected to a distribution network in Northern China illustrates the approach. The results prove the efficiency of the approach using the proposed indices in the classification and generation of the TLPs of large electricity customers.
机译:进行负载模式分析是获得客户的典型负载曲线(TLP)并根据其负载特征将其分组的重要任务。当使用聚类技术来获得电力用户的负载模式时,选择合适的聚类算法并确定合适的聚类数量始终是重要且困难的问题。因此,本文提出了用于选择最合适的聚类算法的稳定性指标和用于确定聚类优先级的优先级指标(基于稳定性指标)。基于三种已知的聚类算法,提出了一种分析方法来演示这些索引的使用。在这种方法中,首先将客户的所有负载曲线通过聚类算法在给定数量的集群下进行聚类。然后计算两个上述指数。然后,选择最合适的聚类算法,并可以出于特殊应用目的从等级列表中确定最佳聚类数。通过在中国北方的大型电力客户连接到配电网的案例研究说明了该方法。结果证明了在大型电力客户的TLP的分类和生成中使用建议的索引的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号