首页> 外文期刊>Power Systems, IEEE Transactions on >A Hybrid Intelligent Model for Deterministic and Quantile Regression Approach for Probabilistic Wind Power Forecasting
【24h】

A Hybrid Intelligent Model for Deterministic and Quantile Regression Approach for Probabilistic Wind Power Forecasting

机译:确定性和分位数回归方法的概率风电混合智能模型

获取原文
获取原文并翻译 | 示例

摘要

With rapid increase in wind power penetration into the power grid, wind power forecasting is becoming increasingly important to power system operators and electricity market participants. The majority of the wind forecasting tools available in the literature provide deterministic prediction, but given the variability and uncertainty of wind, such predictions limit the use of the existing tools for decision-making under uncertain conditions. As a result, probabilistic forecasting, which provides information on uncertainty associated with wind power forecasting, is gaining increased attention. This paper presents a novel hybrid intelligent algorithm for deterministic wind power forecasting that utilizes a combination of wavelet transform (WT) and fuzzy ARTMAP (FA) network, which is optimized by using firefly (FF) optimization algorithm. In addition, support vector machine (SVM) classifier is used to minimize the wind power forecast error obtained from WT+FA+FF. The paper also presents a probabilistic wind power forecasting algorithm using quantile regression method. It uses the wind power forecast results obtained from the proposed hybrid deterministic WT+FA+FF+SVM model to evaluate the probabilistic forecasting performance. The performance of the proposed forecasting model is assessed utilizing wind power data from the Cedar Creek wind farm in Colorado.
机译:随着风力发电在电网中的渗透迅速增加,对于电力系统运营商和电力市场参与者而言,风力发电预测变得越来越重要。文献中提供的大多数风能预测工具都提供确定性预测,但是鉴于风的可变性和不确定性,此类预测限制了在不确定条件下使用现有工具进行决策的能力。结果,提供与风电预测相关的不确定性信息的概率预测越来越受到关注。本文提出了一种新颖的确定性风电混合智能算法,该算法结合了小波变换(WT)和模糊ARTMAP(FA)网络,并通过萤火虫(FF)优化算法进行了优化。此外,支持向量机(SVM)分类器用于最小化从WT + FA + FF获得的风电预测误差。本文还提出了采用分位数回归方法的概率风电功率预测算法。它使用从提出的混合确定性WT + FA + FF + SVM模型获得的风电功率预测结果来评估概率预测性能。利用科罗拉多州Cedar Creek风力发电场的风电数据评估了拟议的预测模型的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号