首页> 外文期刊>Power Systems, IEEE Transactions on >Time Series Shapelet Classification Based Online Short-Term Voltage Stability Assessment
【24h】

Time Series Shapelet Classification Based Online Short-Term Voltage Stability Assessment

机译:基于时间序列小波分类的在线短期电压稳定性评估

获取原文
获取原文并翻译 | 示例

摘要

This paper describes an online short-term voltage stability assessment scheme from an overall view of the load area in the power system. In this scheme, data acquisitions are completed by post-contingency phasor measurements and a time series shapelet classification method is employed for classification learning. Combined with decision trees, this novel approach can not only hold a high performance of classification but also offer an acceptable interpretation of classification results. An improved algorithm to speed up shapelet searching is proposed, which makes it more practical. Semi-supervised cluster learning is also adopted in this scheme to mitigate the unreliability of the previous practical criteria. The test results on the Nordic test system demonstrate the effectiveness and reliability of the proposed scheme.
机译:本文从电力系统负载区域的整体角度描述了在线短期电压稳定性评估方案。在该方案中,数据采集是通过相变后相量测量完成的,并且采用时间序列小波分类方法进行分类学习。结合决策树,这种新颖的方法不仅可以保持高性能的分类,而且可以提供对分类结果的可接受的解释。提出了一种改进的加速小波搜索的算法,使其更加实用。在该方案中还采用了半监督聚类学习,以减轻先前实践标准的不可靠性。在北欧测试系统上的测试结果证明了该方案的有效性和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号