首页> 外文期刊>Computer networks >A just-in-time shapelet selection service for online time series classification
【24h】

A just-in-time shapelet selection service for online time series classification

机译:用于在线时间序列分类的刚性Shoot选择服务

获取原文
获取原文并翻译 | 示例

摘要

Time series classification attracted significant interest over the past decade as a result of the enormous data which can be inserted into the Cyber-Physical System. However, in such system time variant mechanisms violate the stationarity hypothesis which is mostly assumed in the design of classification systems, hence this impairs the accuracy of the classifier. In order to cope with this issue, classifiers with justin-time adaptive training mechanisms are needed, as they allow detecting a change in stationarity and modifying the classifier configuration accordingly to track the process evolution. This paper proposes an online time series classification system including a just-in-time shapelet selection service (JSSS) which selects shapelets as the features for time series classification. The JSSS is based on a fast shapelet selection algorithm (FSS). First, the FSS samples some time series from training dataset with the help of the subclass splitting method. Next, the FSS identifies Local Farthest Deviation Points (LFDPs) from sampled time series; then, the subsequences between two different LFDPs are selected as shapelet candidates. Through these two steps, the number of shapelet candidates is sharply reduced so that the training time is also sharply reduced, which ensures efficient training and feature extraction in an online time series classification system. The experiments showed the JSSS can get results in less than 30 s in the worst condition for all the datasets. At the same time, classification accuracy rates improved by more than 9.9% in the offline scenario and 7.1% in the online scenario. (C) 2019 Elsevier B.V. All rights reserved.
机译:时间序列分类由于可以插入网络 - 物理系统的巨大数据,这一持续数十年吸引了显着的兴趣。然而,在这种系统时,变量机制违反了实质性假设,这些假设主要是在分类系统的设计中,因此损害了分类器的准确性。为了应对这个问题,需要具有Justin-time自适应培训机制的分类器,因为它们允许检测到具有相应的平静性和修改分类器配置的变化以跟踪过程演进。本文提出了一个在线时间序列分类系统,包括一个即时的shapelet选择服务(JSS),它选择Shapelets作为时间序列分类的功能。 JSSS基于快速的ShapEet选择算法(FSS)。首先,在子类分割方法的帮助下,FSS从训练数据集中采样某些时间序列。接下来,FSS识别来自采样时间序列的本地最远偏差点(LFDPS);然后,选择两个不同的LFDP之间的子序列被选择为Shapelet候选。通过这两个步骤,Shapelet候选的数量急剧减少,使得训练时间也急剧减少,这确保了在线时间序列分类系统中的有效培训和特征提取。实验表明,JSSS可以在所有数据集的最差条件下在少于30秒的情况下获得结果。与此同时,在线方案中,分类准确度提高了9.9%以上,在线方案中的7.1%。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号