首页> 外文期刊>Power Systems, IEEE Transactions on >Local and Wide-Area PMU-Based Decentralized Dynamic State Estimation in Multi-Machine Power Systems
【24h】

Local and Wide-Area PMU-Based Decentralized Dynamic State Estimation in Multi-Machine Power Systems

机译:多机电力系统中基于局部和广域PMU的分散动态状态估计

获取原文
获取原文并翻译 | 示例

摘要

Accurate measurement of the rotor angle and speed of synchronous generators is instrumental in developing powerful local or wide-area control and monitoring systems to enhance power grid stability and reliability. Exogenous input signals such as field voltage and mechanical torque are critical information in this context, but obtaining them raises significant logistical challenges, which in turn complicates the estimation of the generator dynamic states from easily available terminal phasor measurement unit (PMU) signals only. To overcome these issues, the authors of this paper employ the extended Kalman filter with unknown inputs, referred to as the EKF-UI technique, for decentralized dynamic state estimation of a synchronous machine states using terminal active and reactive powers, voltage phasor and frequency measurements. The formulation is fully decentralized without single-machine infinite bus (SMIB) or excitation model assumption so that only local information is required. It is demonstrated that using the decentralized EKF-UI scheme, synchronous machine states can be estimated accurately enough to enable wide-area power system stabilizers (WA-PSS) and system integrity protection schemes (SIPS). Simulation results on New-England test system, Hydro-Québec simplified system, and Kundur network highlight the efficiency of the proposed method under fault conditions with electromagnetic transients and full-order generator models in realistic multi-machine setups.
机译:同步发电机转子角和速度的准确测量有助于开发功能强大的局域或广域控制和监视系统,以增强电网的稳定性和可靠性。在这种情况下,励磁电压和机械转矩等外来输入信号是至关重要的信息,但是获取它们会带来严重的后勤挑战,这又使仅根据容易获得的终端相量测量单元(PMU)信号估算发电机动态状态变得复杂。为了克服这些问题,本文的作者采用带有未知输入的扩展卡尔曼滤波器(称为EKF-UI技术),用于使用终端有功功率和无功功率,电压相量和频率测量来对同步电机状态进行分散的动态状态估计。 。该公式完全分散,无需单机无穷大总线(SMIB)或激励模型假设,因此仅需要本地信息。结果表明,使用分散式EKF-UI方案,可以准确地估计同步机器状态,以启用广域电力系统稳定器(WA-PSS)和系统完整性保护方案(SIPS)。新英格兰测试系统,Hydro-Québec简化系统和Kundur网络的仿真结果凸显了该方法在故障条件下的电磁瞬态和全阶发电机模型在实际多机设置中的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号