首页> 外文期刊>IEEE Transactions on Power Systems >Data-Driven DG Capacity Assessment Method for Active Distribution Networks
【24h】

Data-Driven DG Capacity Assessment Method for Active Distribution Networks

机译:主动配电网数据驱动DG容量评估方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a data-driven method based on distributionally robust optimization to determine the maximum penetration level of distributed generation (DG) for active distribution networks. In our method, the uncertain DG outputs and load demands are formulated as stochastic variables following some ambiguous distributions. In addition to the given expectations and variances, the polyhedral uncertainty intervals are employed for the construction of the probability distribution set to restrict possible distributions. Then, we decide the optimal sizes and locations of DG to maximize the total DG hosting capacity under the worst-case probability distributions among this set. Since more information is utilized, our proposed model is expected to be less conservative than the robust optimization method and the traditional distributionally robust method. Using the CVaR (Conditional Value at Risk) reformulation technique and strong duality, we transform the proposed model into an equivalent bilinear matrix inequality problem, and a sequential convex optimization algorithm is applied for solution. Our model guarantees that the probability of security constraints being violated will not exceed a given risk threshold. Besides, the predefined risk level can be tuned to control the conservativeness of our model in a physically meaningful way. The effectiveness and robustness of this proposed method are demonstrated numerically on the two modified IEEE test systems.
机译:本文提出了一种基于分布式鲁棒优化的数据驱动方法,以确定主动配电网的分布式发电(DG)的最大渗透水平。在我们的方法中,将不确定的DG输出和负载需求公式化为遵循某些模棱两可分布的随机变量。除了给定的期望和方差之外,多面不确定性区间还用于构造概率分布集以限制可能的分布。然后,我们确定最佳的DG大小和位置,以在该组中最坏情况的概率分布下最大化DG的总托管容量。由于利用了更多的信息,因此我们提出的模型比稳健优化方法和传统的分布稳健方法要保守一些。利用CVaR(风险有条件值)重新制定技术和强对偶性,将提出的模型转换为等效的双线性矩阵不等式问题,并采用顺序凸优化算法进行求解。我们的模型保证了违反安全约束的可能性不会超过给定的风险阈值。此外,可以调整预定义的风险级别,以物理上有意义的方式控制模型的保守性。在两个改进的IEEE测试系统上通过数值论证了该方法的有效性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号