首页> 外文OA文献 >A Data-Driven Stochastic Reactive Power Optimization Considering Uncertainties in Active Distribution Networks and Decomposition Method
【2h】

A Data-Driven Stochastic Reactive Power Optimization Considering Uncertainties in Active Distribution Networks and Decomposition Method

机译:考虑有源配电网不确定性的数据驱动随机无功优化及分解方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To address the uncertain output of distributed generators (DGs) for reactive power optimization in active distribution networks, the stochastic programming model is widely used. The model is employed to find an optimal control strategy with minimum expected network loss while satisfying all the physical constraints. Therein, the probability distribution of uncertainties in the stochastic model is always pre-defined by the historical data. However, the empirical distribution can be biased due to a limited amount of historical data and thus result in a suboptimal control decision. Therefore, in this paper, a data-driven modeling approach is introduced to assume that the probability distribution from the historical data is uncertain within a confidence set. Furthermore, a data-driven stochastic programming model is formulated as a two-stage problem, where the first-stage variables find the optimal control for discrete reactive power compensation equipment under the worst probability distribution of the second stage recourse. The second-stage variables are adjusted to uncertain probability distribution. In particular, this two-stage problem has a special structure so that the second-stage problem can be directly decomposed into several small-scale sub-problems, which can be handled in parallel without the information of dual problems. Numerical study on two distribution systems has been performed. Comparisons with the two-stage stochastic and robust approaches demonstrate the effectiveness of the proposal.
机译:为了解决有源配电网中用于无功优化的分布式发电机(DG)的不确定输出,广泛使用了随机规划模型。该模型用于在满足所有物理约束的同时找到具有最小预期网络损失的最优控制策略。其中,随机模型中不确定性的概率分布始终由历史数据预先定义。但是,由于数量有限的历史数据,经验分布可能会出现偏差,从而导致控制决策欠佳。因此,在本文中,引入了一种数据驱动的建模方法,以假定历史数据的概率分布在置信度集中不确定。此外,将数据驱动的随机规划模型表述为一个两阶段问题,其中第一阶段变量在第二阶段追索权的最差概率分布下找到离散无功功率补偿设备的最优控制。将第二阶段变量调整为不确定的概率分布。特别地,此两阶段问题具有特殊的结构,因此第二阶段问题可以直接分解为几个小规模的子问题,这些问题可以并行处理而无需双重问题的信息。已经对两个配电系统进行了数值研究。与两阶段随机和鲁棒方法的比较证明了该建议的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号