首页> 外文期刊>Power Systems, IEEE Transactions on >Data-Driven Planning for Renewable Distributed Generation Integration
【24h】

Data-Driven Planning for Renewable Distributed Generation Integration

机译:可再生分布式生成集成的数据驱动规划

获取原文
获取原文并翻译 | 示例

摘要

As significant amounts of renewable distributed generation (RDG) are installed in the power grid, it becomes increasingly important to plan RDG integration to maximize the utilization of renewable energy and mitigate unintended consequences, such as phase unbalance. One of the biggest challenges in RDG integration planning is the lack of sufficient information to characterize uncertainty (e.g., load and renewable output). In this paper, we propose a two-stage data-driven distributionally robust optimization model (O-DDSP) for the optimal placement of RDG resources, with both load and generation uncertainties described by a data-driven ambiguity set that both enables more flexibility than stochastic optimization (SO) and allows less conservative solutions than robust optimization (RO). The objective is to minimize the total cost of RDG installation plus the total operational cost on the planning horizon. Furthermore, we introduce a tight approximation of O-DDSP based on principal component analysis (leading to a model called P-DDSP), which reduces the original problem size by keeping the most valuable data in the ambiguity set. The performance of O-DDSP and P-DDSP is compared with SO and RO on the IEEE 33-bus radial network with a real data set, where we show that P-DDSP significantly speeds up the solution procedure, especially when the problem size increases. Indeed, as compared to SO and RO, which become computationally impractical for solving problems with large sample sizes, our proposed P-DDSP can use large samples to increase solution accuracy without increasing the solution time. Finally, extensive numerical experiments demonstrate that optimal RDG planning decisions lead to significant savings as well as increased renewable penetration.
机译:作为大量可再生分布式发电(RDG)安装在电网中,计划RDG集成越来越重要,以最大限度地利用可再生能源,减轻非预期后果,例如相位不平衡。 RDG集成计划中最大的挑战之一是缺乏足够的信息来表征不确定性(例如,负载和可再生输出)。在本文中提出了一种用于最佳地放置RDG资源的两阶段数据驱动的分布稳健优化模型(O-DDSP),其中包含数据驱动的模糊集合的负载和生成不确定性,两者都可以实现比随机优化(SO)并允许较少保守的解决方案而不是鲁棒优化(RO)。目的是最大限度地减少RDG安装的总成本加上规划地平线上的总运营成本。此外,我们基于主成分分析(导致名为P-DDSP的模型)引入了O-DDSP的紧密近似,这通过保持了模糊集中最有价值的数据来减少原始问题大小。将O-DDSP和P-DDSP的性能与IEEE 33-Bus径向网络上的SO和RO进行比较,具有真实数据集,我们认为P-DDSP显着加速解决方案程序,尤其是当问题尺寸增加时。实际上,与SO和RO相比,这对于解决大型样本尺寸的问题而变得计算不切实际,我们所提出的P-DDSP可以使用大型样品来提高溶液精度而不增加解决方案时间。最后,广泛的数值实验表明,最佳的RDG规划决策导致显着的储蓄以及可再生渗透率增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号