首页> 外文期刊>IEEE Transactions on Power Systems >Probabilistic Preassessment Method of Parameter Identification Accuracy With an Application to Identify the Drive Train Parameters of DFIG
【24h】

Probabilistic Preassessment Method of Parameter Identification Accuracy With an Application to Identify the Drive Train Parameters of DFIG

机译:具有应用程序的参数识别准确性的概率识别准确性,以识别DFIG的驱动器列参数

获取原文
获取原文并翻译 | 示例

摘要

Parameter identification facilitates the improvement of the accuracy of power system simulation. However, for complex models of electrical equipment, it is impossible to simultaneously identify all the parameters. Inaccurate values of the nontarget parameters (NTPs) will affect the identification accuracy of the target parameters (TPs). However, no suitable methods are available in the parameter identification process to assess and handle this adverse impact. Therefore, a probabilistic preassessment method (PPM) is proposed to assess the possible identification accuracy of the TPs when the NTPs are inaccurate. PPM can provide more useful quantitative information than traditional sensitivity analysis for selecting the disturbance form, the observation variable, and the TPs that can be accurately identified. Then, a statistical identification process (SIP) is proposed to eliminate the dependence of the traditional parameter identification method on accurate NTPs. In SIP, parameter identification is repeated by using random values of the NTPs. Then, the mean value of the high-probability identification results is selected as the final result. Some of the identification results can be adjusted according to the PPM result to further improve the accuracy. The proposed methods were successfully used to identify the parameters of a two-mass drive train model of a DFIG wind turbine generator under the assumption that the generator and controller parameters are unknown.
机译:参数识别有助于提高电力系统仿真精度。然而,对于电气设备的复杂模型,不可能同时识别所有参数。不准确的Nontarget参数(NTPS)的值将影响目标参数(TPS)的识别准确性。然而,参数识别过程中没有合适的方法可以评估和处理这种不利影响。因此,提出了一种概率的预借水方法(PPM)以评估当NTP不准确时TP的可能识别精度。 PPM可以提供比传统灵敏度分析更有用的定量信息,以选择干扰形式,观察变量和可以精确识别的TPS。然后,提出了一种统计识别过程(SIP)以消除传统参数识别方法对准确NTPS的依赖性。在SIP中,通过使用NTP的随机值重复参数识别。然后,选择高概率识别结果的平均值作为最终结果。可以根据PPM结果调整一些识别结果,以进一步提高精度。在假设发电机和控制器参数未知的情况下,所提出的方法成功地用于识别DFIG风力涡轮发电机的双质量传动系模型的参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号