首页> 外文期刊>IEEE Transactions on Power Systems >Adversarial Feature Learning of Online Monitoring Data for Operational Risk Assessment in Distribution Networks
【24h】

Adversarial Feature Learning of Online Monitoring Data for Operational Risk Assessment in Distribution Networks

机译:配网操作风险评估在线监测数据的对抗性学习

获取原文
获取原文并翻译 | 示例

摘要

With the deployment of online monitoring systems in distribution networks, massive amounts of data collected through them contain rich information on the operating states of the networks. By leveraging the data, an unsupervised approach based on bidirectional generative adversarial networks (BiGANs) is proposed for operational risk assessment in distribution networks in this paper. The approach includes two stages: (1) adversarial feature learning. The most representative features are extracted from the online monitoring data and a statistical index N-phi is calculated for the features, during which we make no assumptions or simplifications on the real data; (2) operational risk assessment. The confidence level 1 - alpha for the population mean of the standardized N-phi is combined with the operational risk levels which are divided into emergency, high risk, preventive, and normal, and the p value for each data point is calculated and compared with the pre-defined interval of alpha/2 to determine the risk levels. The proposed approach is capable of discovering the latent structure of the real data and providing more accurate assessment result. The synthetic data is employed to illustrate the selection of parameters involved in the proposed approach. Case studies on the real-world online monitoring data validate the effectiveness and advantages of the proposed approach in risk assessment.
机译:随着配电网络中在线监视系统的部署,通过它们收集的大量数据包含有关网络运行状态的丰富信息。通过利用数据,本文提出了一种基于双向生成对抗网络(BiGAN)的无监督方法,用于配电网络的运营风险评估。该方法包括两个阶段:(1)对抗特征学习。从在线监测数据中提取最具代表性的特征,并为这些特征计算统计指标N-phi,在此期间我们不对真实数据进行任何假设或简化。 (2)操作风险评估。将标准化N-phi总体均值的置信度1-alpha与操作风险等级相结合,操作风险等级分为紧急,高风险,预防和正常,并计算每个数据点的p值并与之比较预定的alpha / 2间隔来确定风险级别。所提出的方法能够发现真实数据的潜在结构并提供更准确的评估结果。综合数据用于说明所提出方法中涉及的参数的选择。对现实世界在线监测数据的案例研究验证了该方法在风险评估中的有效性和优势。

著录项

  • 来源
    《IEEE Transactions on Power Systems》 |2020年第2期|975-985|共11页
  • 作者

  • 作者单位

    Shanghai Jiao Tong Univ State Energy Smart Grid Res & Dev Ctr Ctr Big Data & Artificial Intelligence Dept Elect Engn Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ State Energy Smart Grid Res & Dev Ctr Ctr Big Data & Artificial Intelligence Dept Elect Engn Shanghai 200240 Peoples R China|Tennessee Technol Univ Dept Elect & Comp Engn Cookeville TN 38505 USA;

    North China Elect Power Univ State Key Lab Alternate Elect Power Syst Renewabl Baoding 071003 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Operational risk assessment; distribution networks; online monitoring data; bidirectional generative adversarial networks (BiGANs); unsupervised approach;

    机译:操作风险评估;分销网络;在线监测数据;双向生成对抗网络(BiGAN);无监督方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号