首页> 外文期刊>Power Systems, IEEE Transactions on >Applying Polynomial Chaos Expansion to Assess Probabilistic Available Delivery Capability for Distribution Networks With Renewables
【24h】

Applying Polynomial Chaos Expansion to Assess Probabilistic Available Delivery Capability for Distribution Networks With Renewables

机译:应用多项式混沌扩展来评估具有可再生能源的配电网络的概率可用传递能力

获取原文
获取原文并翻译 | 示例

摘要

Considering the increasing penetration of renewable energy sources and electrical vehicles in utility distribution feeders, it is imperative to study the impacts of the resulting increasing uncertainty on the delivery capability of a distribution network. In this paper, probabilistic available delivery capability (ADC) is formulated for a general distribution network integrating various renewable energy sources (RES) and load variations. To reduce the computational efforts by using conventional Monte Carlo simulations, we develop and employ a computationally efficient method to assess the probabilistic ADC, which combines the up-to-date sparse polynomial chaos expansion (PCE) and the continuation method. Particularly, the proposed method is able to handle a large number of correlated random inputs with different marginal distributions. Numerical examples in the IEEE 13 and IEEE 123 node test feeders are presented, showing that the proposed method can achieve accuracy and efficiency simultaneously. Numerical results also demonstrate that the randomness brought about by the RES and loads indeed leads to a reduction in the delivery capability of a distribution network.
机译:考虑到可再生能源和电动汽车在公用事业配电馈线中的渗透率不断提高,必须研究由此带来的不确定性增加对配电网输送能力的影响。在本文中,为综合各种可再生能源(RES)和负载变化的通用配电网络制定了概率可用传递能力(ADC)。为了减少使用常规蒙特卡洛模拟的计算量,我们开发并采用了一种计算有效的方法来评估概率ADC,该方法将最新的稀疏多项式混沌扩展(PCE)与连续方法相结合。特别地,所提出的方法能够处理具有不同边际分布的大量相关随机输入。给出了IEEE 13和IEEE 123节点测试馈线中的数值示例,表明所提出的方法可以同时实现精度和效率。数值结果还表明,RES和负载带来的随机性确实导致配电网络的交付能力下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号