首页> 外文期刊>IEEE Transactions on Power Systems >A Gauss-Jacobi-Block-Newton method for parallel transient stability analysis (of power systems)
【24h】

A Gauss-Jacobi-Block-Newton method for parallel transient stability analysis (of power systems)

机译:用于电力系统并行暂态稳定分析的高斯-雅各比-牛顿-牛顿方法

获取原文
获取原文并翻译 | 示例

摘要

A parallel method for the transient stability simulation of power systems is presented. The trapezoidal rule is used to discretize the set of algebraic-differential equations which describes the transient stability problem. A parallel Block-Newton relaxation technique is used to solve the overall set of algebraic equations concurrently on all the time steps. The parallelism in space of the problem is also exploited. Furthermore, the parallel-in-time formulation is used to change the time steps between iterations by a nested iteration multigrid technique, in order to enhance the convergence of the algorithm. The method has the same reliability and model-handling characteristics of typical dishonest Newton-like procedures. Test results on realistic power systems are presented to show the capability and usefulness of the suggested technique.
机译:提出了一种用于电力系统暂态稳定仿真的并行方法。梯形法则用于离散描述瞬态稳定性问题的代数-微分方程组。并行的块牛顿松弛技术用于在所有时间步上同时求解总的代数方程组。问题空间的并行性也得到了利用。此外,并行时间公式用于通过嵌套迭代多网格技术更改迭代之间的时间步长,以增强算法的收敛性。该方法具有与典型的不诚实类牛顿程序相同的可靠性和模型处理特性。提出了在实际电源系统上的测试结果,以显示所建议技术的功能和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号