首页> 外文期刊>IEEE Transactions on Power Systems >A new short-term load forecasting approach using self-organizingfuzzy ARMAX models
【24h】

A new short-term load forecasting approach using self-organizingfuzzy ARMAX models

机译:自组织模糊ARMAX模型的短期负荷预测新方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new self-organizing model of fuzzynautoregressive moving average with exogenous input variables (FARMAX)nfor one day ahead hourly load forecasting of power systems. To achieventhe purpose of self-organizing the FARMAX model, identification of thenfuzzy model is formulated as a combinatorial optimization problem. Thenna combined use of heuristics and evolutionary programming (EP) scheme isnrelied on to solve the problem of determining optimal number of inputnvariables, best partition of fuzzy spaces and associated fuzzynmembership functions. The proposed approach is verified by using diversentypes of practical load and weather data for Taiwan Power (Taipower)nsystems. Comparisons are made of forecasting errors with the existingnARMAX model implemented by the commercial SAS package and an artificialnneural networks (ANNs) method
机译:本文提出了一种新的自组织模糊自回归移动平均模型,该模型具有外生输入变量(FARMAX)n,可以提前一天进行电力系统每小时负荷预测。为了达到自组织FARMAX模型的目的,将模糊模型的识别作为组合优化问题。然后依靠启发式和进化规划(EP)方案的结合来解决确定输入变量的最佳数量,模糊空间的最佳划分以及相关的模糊成员函数的问题。通过使用台湾电力(Taipower)n系统的实际负载和天气数据的不同类型来验证所提出的方法。与由商业SAS软件包实现的现有nARMAX模型和人工神经网络(ANN)方法对预测误差进行了比较

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号