首页> 外文期刊>IEEE Transactions on Power Systems >Application of a novel fuzzy neural network to real-time transientstability swings prediction based on synchronized phasor measurements
【24h】

Application of a novel fuzzy neural network to real-time transientstability swings prediction based on synchronized phasor measurements

机译:基于同步相量测量的新型模糊神经网络在瞬时暂态波动预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

The ability to rapidly acquire synchronized phasor measurementsnfrom around a power system opens up new possibilities for power systemnprotection and control. In this paper, the authors develop a novel classnof fuzzy hyperrectangular composite neural networks which utilizensynchronized phasor measurements to provide fast transient stabilitynswings prediction for use with high-speed control. Primary features ofnthe method include constructing a fuzzy neural network for all faultnlocations, using a short window of realistic-precision post-fault phasornmeasurements for the prediction, and testing robustness to variations innthe operating point. From simulation tests on a sample power system, itnreveals that the proposed tool can yield a highly successful predictionnrate in real-time
机译:从电力系统周围快速获取同步相量测量值的能力为电力系统的保护和控制开辟了新的可能性。在本文中,作者开发了一种新型的模糊超矩形复合神经网络,该网络利用同步相量测量来提供快速瞬态稳定性和用于高速控制的波动预测。该方法的主要特征包括为所有故障位置构造一个模糊神经网络,使用逼真的精确的故障后相量测量的短窗口进行预测,并测试操作点变化的鲁棒性。从对示例电力系统的仿真测试可以看出,所建议的工具可以实时产生非常成功的预测值

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号