首页> 外文期刊>IEEE Transactions on Power Systems >Artificial neural network approach to single-ended fault locatorfor transmission lines
【24h】

Artificial neural network approach to single-ended fault locatorfor transmission lines

机译:输电线路单端故障定位仪的人工神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the application of an artificial neuralnnetwork-based algorithm to the single-ended fault location ofntransmission lines using voltage and current data. From the faultnlocation equations, similar to the conventional approach, this methodnselects phasors of prefault and superimposed voltages and currents fromnall phases of the transmission line as inputs of the artificial neuralnnetwork. The outputs of the neural network are the fault position andnthe fault resistance. With its function approximation ability, thenneural network is trained to map the nonlinear relationship existing innthe fault location equations with the distributed parameter line model.nIt can get both fast speed and high accuracy. The influence of thenremote-end infeed on neural network structure is studied. A comparisonnwith the conventional method has been done. It is shown that the neuralnnetwork-based method can adapt itself to big variations of sourcenimpedances at the remote terminal. Finally, when the remote sourcenimpedances vary in small ranges, the structure of artificial neuralnnetwork has been optimized by the pruning method
机译:本文介绍了一种基于神经网络的人工算法在输电线路单端故障定位中的电压和电流数据的应用。与传统方法类似,该方法从故障定位方程中选择预故障的相量以及传输线各相的叠加电压和电流作为人工神经元网络的输入。神经网络的输出是故障位置和故障电阻。借助其功能逼近能力,然后训练神经网络以分布参数线模型映射故障定位方程中存在的非线性关系.n它可以获得快速和高精度。研究了远端进给对神经网络结构的影响。与传统方法进行了比较。结果表明,基于神经网络的方法可以适应远程终端源阻抗的较大变化。最后,当远程源阻抗在较小范围内变化时,通过修剪方法优化了人工神经元网络的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号