首页> 外文期刊>IEEE Transactions on Power Systems >Artificial neural network approach to single-ended fault locator for transmission lines
【24h】

Artificial neural network approach to single-ended fault locator for transmission lines

机译:人工神经网络方法在输电线路单端故障定位中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the application of an artificial neural network-based algorithm to the single-ended fault location of transmission lines using voltage and current data. From the fault location equations, similar to the conventional approach, this method selects phasors of prefault and superimposed voltages and currents from all phases of the transmission line as inputs of the artificial neural network. The outputs of the neural network are the fault position and the fault resistance. With its function approximation ability, the neural network is trained to map the nonlinear relationship existing in the fault location equations with the distributed parameter line model. It can get both fast speed and high accuracy. The influence of the remote-end infeed on neural network structure is studied. A comparison with the conventional method has been done. It is shown that the neural network-based method can adapt itself to big variations of source impedances at the remote terminal. Finally, when the remote source impedances vary in small ranges, the structure of artificial neural network has been optimized by the pruning method.
机译:本文介绍了一种基于人工神经网络的算法在使用电压和电流数据的输电线路单端故障定位中的应用。与常规方法类似,该方法从故障位置方程中选择预故障的相量以及传输线各相的叠加电压和电流作为人工神经网络的输入。神经网络的输出是故障位置和故障电阻。借助其函数逼近能力,训练了神经网络,以利用分布的参数线模型映射故障定位方程中存在的非线性关系。它可以获得快速和高精度。研究了远端馈电对神经网络结构的影响。与传统方法进行了比较。结果表明,基于神经网络的方法可以适应远程终端源阻抗的较大变化。最后,当远程源阻抗在较小范围内变化时,已通过修剪方法优化了人工神经网络的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号