首页> 外文期刊>IEEE Transactions on Plasma Science >Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments
【24h】

Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments

机译:兆瓦相对论谐波回旋管行波管放大器实验

获取原文
获取原文并翻译 | 示例

摘要

The first multimegawatt (4 MW, /spl eta/=8%) harmonic (/spl omega/=s/spl Omega//sub c/, s=2,3) relativistic gyrotron traveling-wave tube (gyro-twt) amplifier experiment has been designed, built, and tested. Results from this experimental setup, including the first ever reported third-harmonic gyro-twt results, are presented. Operation frequency is 17.1 GHz. Detailed phase measurements are also presented. The electron beam source is SNOMAD-II, a solid-state nonlinear magnetic accelerator driver with nominal parameters of 400 kV and 350 A. The flat-top pulsewidth is 30 ns. The electron beam is focused using a Pierce geometry and then imparted with transverse momentum using a bifilar helical wiggler magnet. The imparted beam pitch is a /spl alpha//spl equiv//spl beta//sub /spl perp////spl beta//sub /spl par///spl ap/1. Experimental operation involving both a second-harmonic interaction with the TE/sub 21/ mode and a third-harmonic interaction with the TE/sub 31/ mode, both at 17 GHz, has been characterized. The third-harmonic interaction resulted in 4-MW output power and 50-dB single-pass gain, with an efficiency of up to /spl sim/8% (for 115-A beam current). The best measured phase stability of the TE/sub 31/ amplified pulse was /spl plusmn/10/spl deg/ over a 9-ns period. The phase stability was limited because the maximum RF power was attained when operating far from wiggler resonance. The second harmonic, TE/sub 21/ had a peak amplified power of 2 MW corresponding to 40 dB single-pass gain and 4% efficiency. The second-harmonic interaction showed stronger superradiant emission than the third-harmonic interaction. Characterizations of the second- and third-harmonic gyro-twt experiments presented here include measurement of far-field radiation patterns, gain and phase versus interaction length, phase stability, and output power versus input power.
机译:首个兆瓦(4 MW,/ spl eta / = 8%)谐波(/ spl omega / = s / spl Omega // sub c /,s = 2,3)相对论回旋管行波管(gyro-twt)放大器实验已经设计,构建和测试。给出了该实验装置的结果,包括有史以来首次报告的三次谐波陀螺-twt结果。工作频率为17.1 GHz。还提供了详细的相位测量。电子束源是SNOMAD-II,固态非线性磁加速器驱动器,标称参数为400 kV和350A。平顶脉冲宽度为30 ns。电子束使用皮尔斯(Pierce)几何形状聚焦,然后使用双股螺旋扭摆磁体赋予横向动量。赋予的光束间距为/ spl alpha // spl equiv // spl beta // sub / spl perp //// spl beta // sub / spl par /// spl ap / 1。已经表征了包括在TE / sub 21 /模式下的二次谐波相互作用和在TE / sub 31 /模式下的三次谐波相互作用的实验操作,二者均在17 GHz时进行。三次谐波相互作用产生4 MW的输出功率和50 dB的单通增益,效率高达/ spl sim / 8%(对于115A的束电流)。在9 ns的时间内,TE / sub 31 /放大脉冲的最佳测量相位稳定性为/ spl plusmn / 10 / spl deg /。相位稳定性受到限制,因为在远离摆动振动的情况下可以获得最大的RF功率。二次谐波TE / sub 21 /具有2 MW的峰值放大功率,对应40 dB单通增益和4%的效率。次谐波相互作用显示出比三次谐波相互作用更强的超辐射发射。这里介绍的第二次和第三次谐波陀螺-twt实验的特征包括远场辐射方向图,增益和相位对相互作用长度,相位稳定性以及输出功率对输入功率的测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号