首页> 外文期刊>IEEE Transactions on Plasma Science >Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications
【24h】

Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications

机译:与融合应用相关的2-D和3-D MHD流动的数值分析

获取原文
获取原文并翻译 | 示例

摘要

The analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability into the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.
机译:对许多融合应用(例如液-金属毡)的分析需要应用计算流体力学(CFD)方法,以在几何复杂区域中并在强磁场存在下对导电液体进行处理。当前通用的通用CFD代码允许对复杂几何区域中的流动进行建模,同时对液体和周围的固体零件进行共轭传热分析。通用的CFD代码与磁流体动力学(MHD)功能一起,将成为设计和优化聚变设备的宝贵工具。本文介绍了将MHD功能引入到通用CFD代码CFX(ANSYS Workbench的一部分)中。该代码适用于使用磁感应方法的MHD问题。 CFX允许使用运输或泊松方程式引入用户定义的变量。为了对代码进行MHD调整,除了电位的泊松方程外,还针对磁场的分量引入了三个附加的输运方程。洛伦兹力作为源项包含在动量传输方程中。聚变应用通常涉及非常强的磁场,哈特曼数的值高达数万。在这种情况下,具有大量源项和非常强的可变梯度的MHD方程组变得非常僵化。为了提高系统的鲁棒性,在迭代收敛过程中引入了特殊的措施,例如使用动量方程的源系数进行线性化。通用CFD代码中的MHD实现已针对基准进行了测试,这些基准是专门为液态金属毡应用选择的。使用本实施方式的数值模拟结果与方形截面管道中具有导电壁和非导电壁的二维层流中Hartmann数高达1500的解析解非常匹配。还包括3-D测试用例的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号