...
首页> 外文期刊>Plant Physiology >Glutamine Synthetase-Glutamate Synthase Pathway and Glutamate Dehydrogenase Play Distinct Roles in the Sink-Source Nitrogen Cycle in Tobacco
【24h】

Glutamine Synthetase-Glutamate Synthase Pathway and Glutamate Dehydrogenase Play Distinct Roles in the Sink-Source Nitrogen Cycle in Tobacco

机译:谷氨酰胺合成酶-谷氨酸合酶途径和谷氨酸脱氢酶在烟草源氮循环中的作用不同。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Glutamate (Glu) metabolism and amino acid translocation were investigated in the young and old leaves of tobacco (Nicotiana tabacum L. cv Xanthi) using [15N]ammonium and [2-15N]Glu tracers. Regardless of leaf age, [15N]ammonium assimilation occurred via glutamine synthetase (GS; EC 6.1.1.3) and Glu synthase (ferredoxin [Fd]-GOGAT; EC 1.4.7.1; NADH-GOGAT; EC 1.4.1.14), both in the light and darkness, and it did not depend on Glu dehydrogenase (GDH; EC 1.4.1.2). The [15N]ammonium and ammonium accumulation patterns support the role of GDH in the deamination of [2-15N]Glu to provide 2-oxoglutarate and [15N]ammonium. In the dark, excess [15N]ammonium was incorporated into asparagine that served as an additional detoxification molecule. The constant Glu levels in the phloem sap suggested that Glu was continuously synthesized and supplied into the phloem regardless of leaf age. Further study using transgenic tobacco lines, harboring the promoter of the GLU1 gene (encoding Arabidopsis [Arabidopsis thaliana] Fd-GOGAT) fused to a GUS reporter gene, revealed that the expression of Fd-GOGAT remained higher in young leaves compared to old leaves, and higher in the veins compared to the mesophyll. Confocal laser-scanning microscopy localized the Fd-GOGAT protein to the phloem companion cells-sieve element complex in the leaf veins. The results are consistent with a role of Fd-GOGAT in supplying Glu for the synthesis and transport of amino acids. Taken together, the data provide evidence that the GS-GOGAT pathway and GDH play distinct roles in the source-sink nitrogen cycle of tobacco leaves. nnnn--------------------------------------------------------------------------------nPlants utilize nitrate, ammonium, and dinitrogen (N2) molecules as external nitrogen sources. Ammonium is the final form of inorganic nitrogen prior to the synthesis of organic nitrogen compounds. Ammonium is also produced via internal metabolic reactions, including photorespiration, hydrolysis of nitrogen carrying and storage molecules, and amino acid conversion (Ireland and Lea, 1999). In nonleguminous C3 plants, such as tobacco (Nicotiana tabacum), the photorespiratory ammonium production by the oxidative decarboxylation of Gly exceeds by about 10-fold the primary nitrate reduction in the vegetative leaves. In the senescing leaves, a large amount of ammonium is produced as a result of protein hydrolysis (Hörteinsteiner and Feller, 2002). Therefore, it is essential that toxic ammonium be immediately reassimilated into organic molecules for nitrogen cycling. Ammonium is assimilated into the Gln amide group, which is then transferred to the position of 2-oxoglutarate, yielding two molecules of Glu by the concerted reaction of Gln synthetase (GS; EC 6.1.1.3) and Glu synthase (ferredoxin [Fd]-GOGAT; EC 1.4.7.1; NADH-GOGAT; EC 1.4.1.14). Nitrogen is then incorporated into Asp, Ala, Asn, and other amides and amino acids. Gln-dependent Asn synthetase (AS; EC 6.3.5.4) provides Asn, which serves as a nitrogen carrier together with Gln and Glu. nNumerous studies have been carried out to define the roles of enzymes in nitrogen assimilation and remobilization, tightly interrelated processes during plant growth and development (Miflin and Habash, 2002). It was proposed that ammonium might be directly incorporated into Glu by amination of 2-oxoglutarate via mitochondrial Glu dehydrogenase (NADH-GDH; EC 1.4.1.2) and subsequently into Gln by cytosolic GS1 under particular physiological conditions. Studies on source-sink relations have shown that GDH is induced in old leaves when nitrogen remobilization is maximal (Srivastava and Singh, 1987; Masclaux et al., 2000). This led to the proposal that the physiological role of GDH is to synthesize Glu for translocation in senescing leaves (for review, see Miflin and Habash, 2002). However, there is no evidence to discern a redundant or indispensable role of GDH and GOGAT for Glu synthesis and nitrogen remobilization. In addition, GDH catalyzes the reversible oxidative deamination of Glu to supply 2-oxoglutarate and ammonium (Aubert et al., 2001). nnTo better understand the role of GDH and GOGAT in Glu metabolism in the coordinated reaction with GS, we studied the kinetics of in vivo turnover of [15N]Glu fed to leaf discs during aging of tobacco plants. The time course of [15N]ammonium assimilation into the amino acids was then determined in vivo in young and old leaves. To understand the cellular compartmentation of Glu synthesis and amino acid translocation, we investigated the tissue-specific expression and the cellular localization of Fd-GOGAT in tobacco plants transformed by a fusion between the promoter of the Arabidopsis (Arabidopsis thaliana) Fd-GOGAT gene (GLU1) and a reporter gene.
机译:使用[15N]铵和[2-15N] Glu示踪剂研究了烟草(Nicotiana tabacum L. cv Xanthi)的新老叶片中的谷氨酸(Glu)代谢和氨基酸转运。无论叶龄如何,[15N]铵同化都是通过谷氨酰胺合成酶(GS; EC 6.1.1.3)和Glu合酶(铁氧还蛋白[Fd] -GOGAT; EC 1.4.7.1; NADH-GOGAT; EC 1.4.1.14)发生的。光与暗,并且它不依赖于Glu脱氢酶(GDH; EC 1.4.1.2)。 [15N]铵和铵的积累模式支持GDH在[2-15N] Glu脱氨中提供2-氧戊二酸酯和[15N]铵的作用。在黑暗中,将过量的[15N]铵掺入天冬酰胺中,作为另外的解毒分子。韧皮部汁液中恒定的Glu水平表明,无论叶龄如何,Glu都是不断合成并提供给韧皮部的。使用融合了GUS报告基因的GLU1基因(编码拟南芥[Arabidopsis thaliana] Fd-GOGAT)启动子的转基因烟草品系进行的进一步研究表明,与老叶相比,Fd-GOGAT的表达在年轻叶片中仍然较高,与叶肉相比,在静脉中更高。共聚焦激光扫描显微镜将Fd-GOGAT蛋白定位在叶脉中的韧皮部伴侣细胞-筛子元素复合体上。该结果与Fd-GOGAT在提供Glu用于氨基酸合成和运输中的作用一致。两者合计,这些数据提供了证据,表明GS-GOGAT途径和GDH在烟叶的源库氮循环中起着不同的作用。 nnnn ------------------------------------------------- ------------------------------- n植物利用硝酸盐,铵和二氮(N2)分子作为外部氮源。在合成有机氮化合物之前,铵是无机氮的最终形式。铵还通过内部代谢反应产生,包括光呼吸,氮携带和存储分子的水解以及氨基酸转化(Ireland和Lea,1999)。在非豆科的C3植物中,例如烟草(Nicotiana tabacum),由于Gly的氧化脱羧作用而产生的光呼吸性铵盐,其在植物叶片中的主要硝酸盐还原量约高10倍。在衰老的叶片中,由于蛋白质水解而产生大量的铵(Hörteinsteiner和Feller,2002)。因此,必须将有毒的铵立即重新吸收到有机分子中进行氮循环。铵被吸收到Gln酰胺基团中,然后转移到2-氧戊二酸的位置,通过Gln合成酶(GS; EC 6.1.1.3)和Glu合酶(铁氧还蛋白[Fd]- GOGAT; EC 1.4.7.1; NADH-GOGAT; EC 1.4.1.14)。然后将氮掺入Asp,Ala,Asn和其他酰胺和氨基酸中。依赖于Gln的Asn合成酶(AS; EC 6.3.5.4)提供了Asn,它与Gln和Glu一起作为氮载体。 n已经进行了大量研究来确定酶在氮同化和迁移中的作用,以及植物生长和发育过程中紧密相关的过程(Miflin和Habash,2002)。有人提出,铵盐可以通过线粒体Glu脱氢酶(NADH-GDH; EC 1.4.1.2)通过2-氧戊二酸酯的胺化直接掺入Glu,然后在特定的生理条件下通过胞质GS1掺入Gln。源库关系研究表明,当氮的迁移达到最大时,老叶片中会诱导GDH(Srivastava和Singh,1987; Masclaux等,2000)。这就提出了GDH的生理作用是合成Glu以便在衰老叶片中进行易位的建议(有关综述,请参见Miflin和Habash,2002)。但是,没有证据表明GDH和GOGAT在Glu合成和氮固定方面具有多余或必不可少的作用。此外,GDH催化Glu的可逆氧化脱氨反应,提供2-氧代戊二酸酯和铵盐(Aubert等,2001)。为了更好地了解GDH和GOGAT在Glu代谢与GS协同反应中的作用,我们研究了烟草植物衰老过程中馈入叶盘的[15N] Glu体内周转动力学。然后在体内测定年轻和老叶片中[15N]氨同化成氨基酸的时间。为了了解Glu合成和氨基酸易位的细胞间隔,我们研究了拟南芥(Arabidopsis thaliana)Fd-GOGAT基因启动子之间融合后转化的烟草植物中Fd-GOGAT的组织特异性表达和细胞定位。 GLU1)和一个报告基因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号