首页> 外文期刊>Plant Physiology >Chloroplast Vector Systems for Biotechnology Applications
【24h】

Chloroplast Vector Systems for Biotechnology Applications

机译:用于生物技术的叶绿体载体系统

获取原文
获取原文并翻译 | 示例
           

摘要

Chloroplasts are ideal hosts for expression of transgenes. Transgene integration into the chloroplast genome occurs via homologous recombination of flanking sequences used in chloroplast vectors. Identification of spacer regions to integrate transgenes and endogenous regulatory sequences that support optimal expression is the first step in construction of chloroplast vectors. Thirty-five sequenced crop chloroplast genomes provide this essential information. Various steps involved in the design and construction of chloroplast vectors, DNA delivery, and multiple rounds of selection are described. Several crop species have stably integrated transgenes conferring agronomic traits, including herbicide, insect, and disease resistance, drought and salt tolerance, and phytoremediation. Several crop chloroplast genomes have been transformed via organogenesis (cauliflower [Brassica oleracea], cabbage [Brassica capitata], lettuce [Lactuca sativa], oilseed rape [Brassica napus], petunia [Petunia hybrida], poplar [Populus spp.], potato [Solanum tuberosum], tobacco [Nicotiana tabacum], and tomato [Solanum lycopersicum]) or embryogenesis (carrot [Daucus carota], cotton [Gossypium hirsutum], rice [Oryza sativa], and soybean [Glycine max]), and maternal inheritance of transgenes has been observed. Chloroplast-derived biopharmaceutical proteins, including insulin, interferons (IFNs), and somatotropin (ST), have been evaluated by in vitro studies. Human INF2b transplastomic plants have been evaluated in field studies. Chloroplast-derived vaccine antigens against bacterial (cholera, tetanus, anthrax, plague, and Lyme disease), viral (canine parvovirus [CPV] and rotavirus), and protozoan (amoeba) pathogens have been evaluated by immune responses, neutralizing antibodies, and pathogen or toxin challenge in animals. Chloroplasts have been used as bioreactors for production of biopolymers, amino acids, and industrial enzymes. Oral delivery of plant cells expressing proinsulin (Pins) in chloroplasts offered protection against development of insulitis in diabetic mice; such delivery eliminates expensive fermentation, purification, low temperature storage, and transportation. Chloroplast vector systems used in these biotechnology applications are described.
机译:叶绿体是表达转基因的理想宿主。通过在叶绿体载体中使用的侧翼序列的同源重组,将转基因整合到叶绿体基因组中。整合整合转基因和支持最佳表达的内源调节序列的间隔区的鉴定是叶绿体载体构建的第一步。 35个测序的农作物叶绿体基因组提供了这一基本信息。描述了叶绿体载体设计和构建,DNA传递以及多轮选择中涉及的各个步骤。几种农作物具有稳定整合的赋予农艺性状的转基因,包括除草剂,昆虫和抗病性,干旱和耐盐性以及植物修复。几种农作物叶绿体基因组已通过器官发生转化(花椰菜[Brassica oleracea],白菜[Brassica capitata],莴苣[Lactuca sativa],油菜[Brassica napus],矮牵牛[Petunia hybrida],白杨[Populus spp。],马铃薯[Populus spp。]。马铃薯,烟草[烟草]和番茄[番茄],或胚发生(胡萝卜[胡萝卜],棉花[陆地棉],水稻[水稻]和大豆[大豆最大])以及母本的遗传已经观察到转基因。叶绿体衍生的生物药物蛋白,包括胰岛素,干扰素(IFN)和生长激素(ST),已通过体外研究进行了评估。在现场研究中已经评估了人INF2b的转基因组植物。已通过免疫反应,中和抗体和病原体评估了针对细菌(霍乱,破伤风,炭疽,鼠疫和莱姆病),病毒(犬细小病毒[CPV]和轮状病毒)和原生动物(阿米巴)病原体的叶绿体疫苗抗原。或动物中的毒素挑战。叶绿体已被用作生物反应器,用于生产生物聚合物,氨基酸和工业酶。口服传递叶绿体中表达胰岛素原(Pins)的植物细胞可防止糖尿病小鼠发生胰岛炎。这种输送消除了昂贵的发酵,纯化,低温储存和运输。描述了在这些生物技术应用中使用的叶绿体载体系统。

著录项

  • 来源
    《Plant Physiology》 |2007年第4期|p.1129-1143|共15页
  • 作者单位

    Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, Florida 32816–2364;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号