首页> 外文期刊>Physica status solidi >A simulation study on the impact of band gap profile variations and secondary barriers on the temperature behavior, performance ratio, and energy yield of Cu(In,Ga)(Se,S)_2 solar cells
【24h】

A simulation study on the impact of band gap profile variations and secondary barriers on the temperature behavior, performance ratio, and energy yield of Cu(In,Ga)(Se,S)_2 solar cells

机译:带隙分布变化和二级势垒对Cu(In,Ga)(Se,S)_2太阳能电池温度行为,性能比和能量产生的影响的仿真研究

获取原文
获取原文并翻译 | 示例

摘要

Using device simulations, we investigate the change of the temperature behavior of Cu(In,Ga)(Se,S)_2 solar cells. Our goal is to understand the behavior of the performance ratio (PR), normalized energy yield (Y), and the temperature coefficient of the open-circuit voltage as a contribution to the PR and Y. Therefore, we simulate temperature-dependent current-voltage (IVT) curves and apply weather data of a hot climate location to calculate PR and Y. For differently widened absorber band gap profiles, we observe an increase of the open circuit voltage leading to an enhancement of the relative temperature coefficient of the open circuit voltage and of the PR. In addition to that, we investigate the impact of three different barrier locations within the solar cell: at the back contact (a), at the hetero-interface buffer/absorber (b) and a conduction band barrier in the absorber space charge region (c). For all barrier locations, the PR improves with increasing barrier height. For (a) and (b), this improvement is accompanied by a power reduction at standard test conditions (STC) due to a fill factor reduction. In case (c), a small barrier improves STC power and the PR simultaneously. However, increasing barrier height beyond an optimum again leads to a decrease in STC power.
机译:使用设备仿真,我们研究了Cu(In,Ga)(Se,S)_2太阳能电池温度行为的变化。我们的目标是了解性能比(PR),归一化能量产率(Y)和开路电压的温度系数对PR和Y的贡献的行为。因此,我们模拟了温度相关电流-电压(IVT)曲线并应用炎热气候地点的天气数据来计算PR和Y。对于不同宽度的吸收带隙分布,我们观察到开路电压的增加导致开路相对温度系数的增加电压和PR。除此之外,我们还研究了太阳能电池中三个不同的势垒位置的影响:在背触点(a),异质界面缓冲/吸收剂(b)以及吸收剂空间电荷区域中的导带势垒( C)。对于所有障碍物位置,PR都会随着障碍物高度的增加而提高。对于(a)和(b),由于填充因子的降低,这种改进伴随着标准测试条件(STC)的功率降低。在情况(c)中,小的势垒会同时提高STC功率和PR。但是,增加势垒高度超过最佳值又会导致STC功率降低。

著录项

  • 来源
    《Physica status solidi》 |2015年第2期|336-347|共12页
  • 作者单位

    Laboratory for Chalcogenide Photovoltaics (LCP), Energy and Semiconductor Research Laboratory (EHF), Department of Physics, University of Oldenburg, 26129 Oldenburg, Germany;

    AVANCIS GmbH, 81739 Munich, Germany;

    Laboratory for Chalcogenide Photovoltaics (LCP), Energy and Semiconductor Research Laboratory (EHF), Department of Physics, University of Oldenburg, 26129 Oldenburg, Germany;

    Laboratory for Chalcogenide Photovoltaics (LCP), Energy and Semiconductor Research Laboratory (EHF), Department of Physics, University of Oldenburg, 26129 Oldenburg, Germany;

    Laboratory for Chalcogenide Photovoltaics (LCP), Energy and Semiconductor Research Laboratory (EHF), Department of Physics, University of Oldenburg, 26129 Oldenburg, Germany;

    AVANCIS GmbH, 81739 Munich, Germany;

    AVANCIS GmbH, 81739 Munich, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    band gap; CuInGaS_2; device simulations; solar cells; thin films;

    机译:带隙CuInGaS_2;设备仿真;太阳能电池;薄膜;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号