...
首页> 外文期刊>Physical Review. B, Condensed Matter >Impact of g-factors and valleys on spin qubits in a silicon double quantum dot
【24h】

Impact of g-factors and valleys on spin qubits in a silicon double quantum dot

机译:G型因子和谷在硅双量子点中旋转Qubits的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We define single electron spin qubits in a silicon metal-oxide-semiconductor double quantum dot system. By mapping the qubit resonance frequency as a function of a gate-induced electric field, the spectrum reveals an anticrossing that is consistent with an intervalley spin-orbit coupling. We fit the data from which we extract an intervalley coupling strength of 43 MHz. In addition, we observe a narrow resonance near the primary qubit resonance when we operate the device in the (1,1) charge configuration. The experimental data are consistent with a simulation involving two weakly exchanged-coupled spins with a Zeeman energy difference of 1 MHz, of the same order as the Rabi frequency. We conclude that the narrow resonance is the result of driven transitions between the T_− and T_+ triplet states, using an electron spin resonance signal of frequency located halfway between the resonance frequencies of the two individual spins. The findings presented here offer an alternative method of implementing two-qubit gates, of relevance to the operation of larger-scale spin qubit systems.
机译:我们在硅金属氧化物半导体双量子点系统中定义单电子旋转Qubits。通过将Qubit谐振频率映射为栅极感应电场的函数,频谱揭示了与interfalley旋转轨道耦合一致的逆时针。我们符合我们提取43 MHz的interfalley耦合强度的数据。此外,当我们在(1,1)充电配置中操作设备时,我们观察主要QUBBit共振附近的窄谐振。实验数据与涉及两个弱交换耦合的旋转的模拟,其具有1 MHz的塞曼能量差,与Rabi频率相同。我们得出结论,窄谐振是T_-和T_ + Triollet状态之间驱动过渡的结果,使用位于两个单独旋转的谐振频率的中间的频率的电子自旋共振信号。这里提出的发现提供了与大规模自旋Qubit系统的操作相关的替代方法,其与大规模旋转Qubit系统的操作相关。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2017年第4期|045302.1-045302.7|共7页
  • 作者单位

    Centre for Quantum Computation and Communication Technology School of Electrical Engineering and Telecommunications The University of New South Wales Sydney NSW 2052 Australia;

    Centre for Quantum Computation and Communication Technology School of Electrical Engineering and Telecommunications The University of New South Wales Sydney NSW 2052 Australia;

    Centre for Quantum Computation and Communication Technology School of Electrical Engineering and Telecommunications The University of New South Wales Sydney NSW 2052 Australia QuTech TU Delft 2600 GA Delft The Netherlands;

    University of Twente P.O. Box 217 7500 AE Enschede The Netherlands;

    Centre for Quantum Computation and Communication Technology School of Electrical Engineering and Telecommunications The University of New South Wales Sydney NSW 2052 Australia;

    Centre for Quantum Computation and Communication Technology School of Electrical Engineering and Telecommunications The University of New South Wales Sydney NSW 2052 Australia;

    Centre for Quantum Computation and Communication Technology School of Electrical Engineering and Telecommunications The University of New South Wales Sydney NSW 2052 Australia;

    Centre for Quantum Computation and Communication Technology School of Electrical Engineering and Telecommunications The University of New South Wales Sydney NSW 2052 Australia;

    Centre for Quantum Computation and Communication Technology School of Electrical Engineering and Telecommunications The University of New South Wales Sydney NSW 2052 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号