首页> 外文期刊>Physical review. B, Condensed Matter And Materials Physics >Time-resolved cathodoluminescence study of carrier relaxation, transfer, collection, and filling in coupled In_xGa_(1-x)N/GaN multiple and single quantum wells
【24h】

Time-resolved cathodoluminescence study of carrier relaxation, transfer, collection, and filling in coupled In_xGa_(1-x)N/GaN multiple and single quantum wells

机译:耦合In_xGa_(1-x)N / GaN多量子阱和单量子阱中载流子弛豫,转移,收集和填充的时间分辨阴极发光研究

获取原文
获取原文并翻译 | 示例
       

摘要

We have examined in detail the optical properties and carrier capture dynamics of coupled In_xGa_(1-x)N/GaN multiple and single quantum well (MQW and SQW) structures that possess various numbers of QWs in the confinement region adjacent to a SQW. The aim is to study the influence of the structure of an InGaN MQW confinement region on carrier transfer and collection into a coupled SQW. By applying in a complementary way temperature- and excitation-dependent cathodoluminescence (CL) spectroscopy and time-resolved CL measurements, we have analyzed the carrier dynamics and state filling in the SQW and the adjacent MQW. We solved self-consistently the nonlinear Poisson-Schrodinger equation for wurtzite materials including strain, deformation potentials, and piezoelectric field of our In_xGa_(1-x)N/GaN single and multiple QW structures to obtain the excitation-dependent eigenstates that are used to calculate band filling, excitonic lifetimes, and exciton binding energies. We show that it is possible to treat a coupled In_xGa_(1-x)N single and multiple QW system in a way that allows for a determination of the quasi-Fermi levels, carrier densities in separated QWs, luminescence efficiencies, thermal activation energies for carrier transfer, and carrier capture and recombination rates. We demonstrate in this unique method an improved determination of the piezoelectric field and In composition x by a non-contact optical means alone. The results demonstrate an enhanced luminescence efficiency and yet decreased carrier capture rate by the SQW as the number of QWs increases in the adjacent MQW confinement region.
机译:我们已经详细检查了耦合的In_xGa_(1-x)N / GaN多量子阱和单量子阱(MQW和SQW)结构的光学性质和载流子俘获动力学,这些结构在与SQW相邻的约束区域中具有各种QW。目的是研究InGaN MQW限制区的结构对载流子传输和收集到耦合SQW中的影响。通过以互补的方式应用温度和激发依赖的阴极发光(CL)光谱和时间分辨的CL测量,我们分析了SQW和相邻MQW中的载流子动力学和状态填充。我们自洽地求解了纤锌矿材料的非线性Poisson-Schrodinger方程,包括In_xGa_(1-x)N / GaN单层和多层QW结构的应变,形变电势和压电场,以获得与激发有关的本征态计算谱带填充,激子寿命和激子结合能。我们表明,有可能以一种允许确定准费米能级,分开的QW中的载流子密度,发光效率,热激活能的方式来处理耦合的In_xGa_(1-x)N单和多QW系统。载体转移,以及载体捕获和重组率。我们以这种独特的方法证明了通过单独的非接触式光学手段可以更好地确定压电场和In组成x。结果表明,随着相邻MQW限制区域中QW数量的增加,SQW增强了发光效率,但降低了载流子捕获率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号