首页> 外文期刊>Physical review >Ga_(1-x)Mn_xAs/piezoelectric actuator hybrids: A model system for magnetoelastic magnetization manipulation
【24h】

Ga_(1-x)Mn_xAs/piezoelectric actuator hybrids: A model system for magnetoelastic magnetization manipulation

机译:Ga_(1-x)Mn_xAs /压电致动器混合动力:磁弹性磁化操纵的模型系统

获取原文
获取原文并翻译 | 示例
           

摘要

We have investigated the magnetic properties of a piezoelectric actuator/ferromagnetic semiconductor hybrid structure. Using a GaMnAs epilayer as the ferromagnetic semiconductor and applying the piezo stress along its [110] direction, we quantify the magnetic anisotropy as a function of the voltage V_p applied to the piezoelectric actuator using anisotropic magnetoresistance techniques. As the magnetic anisotropy in GaMnAs substantially changes as a function of temperature T, the ratio of the magnetoelastic and the magnetocrystalline anistropies can be tuned from approximately 1/4 to 4. Thus, GaMnAs/piezoelectric actuator hybrids are an ideal model system for the investigation of different piezoelastic magnetization control regimes. At T=5 K the magnetoelastic term is a minor contribution to the magnetic anisotropy. Nevertheless, we show that the switching fields of ρ(μ_0H) loops are shifted as a function of V_p at this temperature. At 50 K-where the magnetoelastic term dominates the magnetic anisotropy-we are able to tune the magnetization orientation by about 70° solely by means of the electrical voltage V_p applied. Furthermore, we derive the magnetostrictive constant λ_(111) as a function of temperature and find values consistent with earlier results. We argue that the piezo voltage control of magnetization orientation is directly transferable to other ferromagnetic/piezoelectric hybrid structures, paving the way to innovative multifunctional device concepts. As an example, we demonstrate piezo voltage-induced irreversible magnetization switching at T=40 K, which constitutes the basic principle of a nonvolatile memory element.
机译:我们已经研究了压电致动器/铁磁半导体混合结构的磁性能。使用GaMnAs外延层作为铁磁半导体并沿其[110]方向施加压应力,我们使用各向异性磁阻技术量化了磁各向异性与施加到压电致动器的电压V_p的函数关系。由于GaMnAs中的磁各向异性随温度T的变化而变化,因此磁弹性和磁晶各向异性的比率可以从大约1/4调整为4。因此,GaMnAs /压电致动器混合体是研究的理想模型系统不同的压电弹性磁化控制方案。在T = 5 K时,磁弹性项对磁各向异性的贡献很小。然而,我们证明了在该温度下ρ(μ_0H)回路的开关场随V_p的变化而变化。在50 K处,磁弹性项主导着磁各向异性-我们仅通过施加的电压V_p就能够将磁化方向调整到大约70°。此外,我们推导出磁致伸缩常数λ_(111)作为温度的函数,并找到与早期结果一致的值。我们认为磁化取向的压电电压控制可直接转移到其他铁磁/压电混合结构,从而为创新的多功能设备概念铺平了道路。例如,我们演示了在T = 40 K时压电电压引起的不可逆磁化切换,这构成了非易失性存储元件的基本原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号