首页> 外文期刊>Physical review >Refining the exchange anisotropy paradigm: Magnetic and microstructural heterogeneity at the Permalloy-CoO interface
【24h】

Refining the exchange anisotropy paradigm: Magnetic and microstructural heterogeneity at the Permalloy-CoO interface

机译:完善交换各向异性范式:坡莫合金-CoO界面的磁性和微观结构异质性

获取原文
获取原文并翻译 | 示例
           

摘要

More than 50 years of extensive research into exchange anisotropy in ferromagnetic-antiferromagnetic bilayers has not produced a convincing explanation for any given system of its principal manifestations, namely, a shift of the hysteresis loop along the field axis (exchange bias) and enhanced coercivity. We have examined this issue in the prototypical polycrystalline Permalloy-CoO bilayer system with samples whose Permalloy thicknesses ranged from 1 to 25 nm. The heterogeneous magnetic and chemical microstructure of the ~l-nm-thick interfacial region is responsible for the observed exchange bias and coercivity, and for their dependence on Permalloy thickness and on temperature. Approximately 75% of the interfacial moment is produced by magnetically hard particles which are exchange coupled to the CoO and are responsible for exchange bias and coercivity by virtue of their exchange coupling to the Permalloy. The remainder of the interfacial moment is produced by a magnetically soft phase that exhibits no exchange bias. The thickness dependence of the exchange bias agrees with the prediction of a random-field model in which the exchange coupling of the distributed hard particles provides a random field operating on the Permalloy. The coercivity is determined by the switching of the hard interfacial particles coupled to the Permalloy; it has a remarkably linear temperature dependence which can be explained by a simple thermal fluctuation model. The exchange bias exhibits the same temperature dependence as the CoO uncompensated spins and these uncompensated spins are on the interfacial {111} planes of the [111]-textured CoO. Finally, the kinetics of the chemical reactions responsible for the interfacial heterogeneity can contribute to the latent period during which the exchange bias can be substantially reversed by applying a field antiparallel to the cooling field.
机译:对于铁磁-反铁磁双层交换各向异性的50多年的广泛研究尚未给出任何给定系统的主要表现的令人信服的解释,即磁滞回线沿磁场轴的移动(交换偏置)和增强的矫顽力。我们已经在原型多晶体坡莫合金-CoO双层系统中检查了这个问题,其样品的坡莫合金厚度为1至25 nm。 〜1 nm厚的界面区域的异质磁性和化学微观结构是导致观察到的交换偏差和矫顽力的原因,并且取决于它们对坡莫合金厚度和温度的依赖性。约75%的界面力矩是由磁性硬质颗粒产生的,这些硬质硬质颗粒交换耦合到CoO,并由于它们与坡莫合金的交换耦合而引起交换偏压和矫顽力。界面力矩的其余部分由无交换偏磁的软磁性相产生。交换偏压的厚度依赖性与随机场模型的预测一致,在随机模型中,分布的硬质颗粒的交换耦合提供了在坡莫合金上运行的随机场。矫顽力取决于与坡莫合金耦合的硬质界面颗粒的转换。它具有明显的线性温度依赖性,可以通过简单的热波动模型来解释。交换偏压表现出与CoO未补偿的自旋相同的温度依赖性,并且这些未补偿的自旋在[111]织构化的CoO的界面{111}面上。最后,负责界面异质性的化学反应的动力学可能会导致潜伏期,在此期间,通过施加与冷却场呈反平行的场,可以使交换偏差基本逆转。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号