首页> 外文学位 >Interface anisotropy and its effect on microstructural evolution during coarsening.
【24h】

Interface anisotropy and its effect on microstructural evolution during coarsening.

机译:界面各向异性及其对粗化过程中微观组织演变的影响。

获取原文
获取原文并翻译 | 示例

摘要

The driving force for coarsening is provided by the excess interfacial free energy. In a system with isotropic interface energies, classical coarsening theories can predict the evolution of the sizes of spherical crystals. However, if the interfaces are anisotropic, crystal growth and shrinkage may be limited by the surface attachment/detachment rate, the motion of ledges, or the nucleation of new layers. The nucleation limited coarsening theory predicts the development of a transient bimodal grain size distribution consisting of large, growing grains with step producing defects and smaller, perfect grains that act as a source of material for the growing grains. To test the predictions of this theory, a comprehensive study of interfacial structure was conducted on the SrTiO3 system. The study consisted of evaluating the surface energy anisotropy of single phase SrTiO3, determining the grain boundary plane distribution, and characterizing the morphological evolution of the SrTiO3 crystals coarsening in titania rich liquid. The characterization of the evolving microstructure included determining the shape and the grain size distribution. However, the microstructures of the experimental systems only approximate the conditions of the theory and, in reality, because of the relatively high solid fraction, coarsening and grain growth occur simultaneously. To differentiate the mechanisms, the coarsening kinetics of SrTiO3 in 15 volume% titania rich liquid at 1500°C were compared with the grain growth kinetics of SrTiO3 at the same temperature with no intentionally added liquid phase. The results show that while large grains in the coarsening system grew at a much greater rate than any grain in the single-phase system, the small grains in the coarsening system grew more slowly. It appears that the increase in the average size of the small grains can be attributed to grain growth rather than coarsening. The simultaneous existence of a constant number of crystals that coarsen rapidly and a decreasing number of small grains that grow only by grain boundary migration is consistent with the nucleation limited coarsening theory.
机译:过量的界面自由能提供了用于粗化的驱动力。在具有各向同性界面能的系统中,经典的粗化理论可以预测球形晶体尺寸的演变。但是,如果界面是各向异性的,则晶体的生长和收缩可能会受到表面附着/分离速率,壁架运动或新层成核的限制。成核有限粗化理论预测了瞬态双峰晶粒尺寸分布的发展,该分布包括大的,正在生长的晶粒,逐步产生缺陷的晶粒以及较小的,完美的晶粒,这些晶粒充当生长晶粒的材料来源。为了验证该理论的预测,对SrTiO3体系的界面结构进行了全面研究。该研究包括评估单相SrTiO3的表面能各向异性,确定晶界平面分布以及表征在富含二氧化钛的液体中粗化的SrTiO3晶体的形态演变。不断发展的微观结构的表征包括确定形状和晶粒尺寸分布。但是,实验系统的微观结构仅近似于理论条件,实际上,由于相对较高的固含量,粗化和晶粒长大同时发生。为了区分机理,将SrTiO3在15%体积的富含二氧化钛的液体中在1500℃下的粗化动力学与在相同温度下无意添加液相的SrTiO3的晶粒生长动力学进行了比较。结果表明,虽然粗化系统中的大晶粒的生长速度比单相系统中的任何晶粒大得多,但粗化系统中的小晶粒的生长速度却更慢。看来小晶粒平均尺寸的增加可归因于晶粒的生长而不是粗化。恒定数量的快速粗化晶体和减少的仅通过晶界迁移生长的小晶粒数量减少的同时存在,与成核有限粗化理论是一致的。

著录项

  • 作者

    Sano, Tomoko.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号