...
首页> 外文期刊>Physical Review. B, Condensed Matter >Self-diffusion measurements in isotopic heterostructures of undoped and in situ doped ZnO: Zinc vacancy energetics
【24h】

Self-diffusion measurements in isotopic heterostructures of undoped and in situ doped ZnO: Zinc vacancy energetics

机译:未掺杂和原位掺杂的ZnO同位素异质结构中的自扩散测量:锌空位能

获取原文
获取原文并翻译 | 示例
           

摘要

It is well established that formation energies of point defects depend on the chemical potential (μ) and Fermi level position (E_F), which is widely used when modeling diffusion phenomena in semiconductors. In return, Arrhenius analysis of self-diffusion can be exploited for the investigation of point defect energetics since self-diffusion is mediated by intrinsic point defects. Specifically, the energetics of Zn vacancies (V_(Zn)) and/or Zn interstitials in ZnO can be potentially revealed via Zn self-diffusion measurements. In this study we have measured Zn self-diffusion varying μ (by shifting from Zn- to O-rich conditions during the sample synthesis) and E_F (by Ga, F, and Cu in situ doping). Corresponding diffusion activation energies were deduced and are discussed in terms of the vacancy diffusion mechanism. This results in an upper limit estimate for the V_(Zn) migration energy of ~1.5eV, and prominent trends for the V_(Zn)) formation energy as a function of μ and E_F are revealed. Concurrently, it is argued that dopant-V_(Zn)) clustering and E_F pinning at deep donor traps should be taken into account when generalizing the interpretation of diffusion data for impurities in ZnO.
机译:公认的是,点缺陷的形成能取决于化学势(μ)和费米能级位置(E_F),这在对半导体中的扩散现象进行建模时被广泛使用。作为回报,自扩散的阿伦尼乌斯分析可用于点缺陷能量学的研究,因为自扩散是由固有的点缺陷所介导的。具体地,可以通过Zn自扩散测量潜在地揭示ZnO中的Zn空位(V_(Zn))和/或Zn间隙的能量。在这项研究中,我们测量了Zn自扩散变化μ(通过在样品合成过程中从富Zn转变为O的条件)和E_F(通过Ga,F和Cu原位掺杂)。推导了相应的扩散活化能,并根据空位扩散机理进行了讨论。这导致V_(Zn)迁移能的上限估计值约为1.5eV,并且揭示了V_(Zn)形成能随μ和E_F的显着趋势。同时,有人认为,当对ZnO中杂质扩散数据的解释进行一般性解释时,应考虑在深施主陷阱处的掺杂剂V_(Zn))聚类和E_F钉扎。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2016年第19期|195208.1-195208.6|共6页
  • 作者单位

    University of Oslo, Department of Physics, Centre for Materials Science and Nanotechnology, PO Box 1048 Blindern, N-0316 Oslo, Norway;

    University of Oslo, Department of Physics, Centre for Materials Science and Nanotechnology, PO Box 1048 Blindern, N-0316 Oslo, Norway;

    Institute of Physics, The Chinese Academy of Sciences, Beijing 100190, China;

    Institute of Physics, The Chinese Academy of Sciences, Beijing 100190, China;

    Institute of Physics, The Chinese Academy of Sciences, Beijing 100190, China;

    University of Oslo, Department of Physics, Centre for Materials Science and Nanotechnology, PO Box 1048 Blindern, N-0316 Oslo, Norway;

    University of Oslo, Department of Physics, Centre for Materials Science and Nanotechnology, PO Box 1048 Blindern, N-0316 Oslo, Norway;

    University of Oslo, Department of Physics, Centre for Materials Science and Nanotechnology, PO Box 1048 Blindern, N-0316 Oslo, Norway;

    University of Oslo, Department of Physics, Centre for Materials Science and Nanotechnology, PO Box 1048 Blindern, N-0316 Oslo, Norway;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号